Demand for Insurance: Which Theory Fits Best?

Some VERY preliminary experimental results from Peru

Jean Paul Petraud
UC Davis

Steve Boucher
UC Davis

Michael Carter
UC Davis

I4 Technical Meeting
Hotel Capo D’Africa, Rome
June 14, 2012
Goals Today

- **Theory**
 - Consider a specific empirical context (Pisco, Peru);
 - Develop two alternative contracts: A) Linear, B) Lump Sum;
 - Compare predictions of insurance demand under:
 - Expected Utility Theory;
 - Cumulative Prospect Theory.
 - Highlight preference parameter spaces such that theories generate different demand predictions.

- **Empirical Approach**
 - Experimental insurance games with Pisco cotton farmers
 - Part I: Elicit farmer-specific values of preference parameters
 - Part II: Elicit farmers’ choice across contracts (Linear vs. Lump Sum vs. None)

- **Descriptive evaluation of theories**: Which theory seems to be most consistent with elicited parameters?
Linear vs. Lump Sum Contracts

- Income under **No Insurance**:
 - \(Y^N = Apq \)
 - \(A \): Area (ha); \(p \): Output price ($/qq); \(q \): yield (qq/ha)

- Compare Linear vs Lump Sum contracts with identical: A) Strikepoint; B) Premium and C) Expected Indemnity payment (i.e., same Expected Income)

- Income under **Linear Insurance**:
 - \(Y^L = Ap[(T - q) - \pi] \) if \(q \leq T \)
 - \(Y^L = Ap(q - \pi) \) if \(q > T \)
 - \(T \): strikepoint (qq/ha); \(\pi \): premium (qq/insured ha)

- Income under **Lump Sum Insurance**:
 - \(Y^S = Ap(q + s - \pi) \) if \(q \leq T \)
 - \(Y^S = Ap(q - \pi) \) if \(q > T \)
 - \(s \): Lump sum indemnity (qq/insured ha)

- Parameterize for Pisco
 - \(A = 5 \) ha; \(p = 100 \) S./qq;
 - \(T = 32 \) qq/ha; \(\pi = 620 \) S./ha; \(s = 1,060 \) S./ha
Linear vs. Lump Sum Contracts

Income

Yield (qq/ha)

No Insurance
Linear Contract
Lump Sum Contract

T = 32
Discrete Version

- Discrete yield distribution with 5 possible outcomes:
 - Start with empirical distribution of average yield in Pisco;
 - Collapse all density above mean into 1 outcome with 55% prob;
 - Collapse density below mean into 5 outcomes with smaller probabilities;

- End up with:
Linear vs. Lump Sum Contracts

Income

Probability

Yield (qq/ha)

0 8 16 24 32 43 = E(yield) 60

0 10% 15% 55%
Linear vs. Lump Sum Contracts

Income (000 S.)

Yield (qq/ha)

Probability

- 10%
- 15%
- 55%

\[E(yield) = 4 \]

55%

15%

10%

0 8 16 24 32 43 = E(yield) 60

0 4 6.2 8 10.2 12 12.9 14.2 16 18.2 26.9 30
- How do we choose between Red vs. Green vs. Blue stars?

- Need to see how insurance effects PMF of income.
PMF's of income under different contracts
PMF's of income under different contracts
PMF’s of income under different contracts
PMF’s of income under different contracts
Contract choice under EUT versus CPT

- **What matters under EUT?**
 - Degree of risk aversion
 - γ: Coefficient of Relative Risk Aversion

- **What matters under CPT?**
 - Degree of risk aversion
 - Subjective probabilities
 - Decision weights assigned to each outcome may differ from objective probabilities
 - α: Coefficient from probability weighting function
 - Reference point and reflection
 - Do I treat “gains” systematically differently than “losses”
 - R: Reference point above which lie gains, below which lie losses.
 - Loss aversion
 - Degree of asymmetry of valuation of losses versus gains
 - λ: Coefficient of loss aversion
Contract Choice under EUT

- $u(Y) = Y^{1-\gamma}$
 - Constant Relative Risk Aversion
 - γ is coefficient of relative risk aversion
 - $\gamma > 0 \rightarrow$ risk averse; $\gamma < 0 \rightarrow$ risk loving

- Linear contract gives greater risk reduction than lump sum contract.

- Risk averse farmers will:
 - Never prefer lump sum to linear;
 - Buy linear if they are sufficiently risk averse ($\gamma > \gamma^*$), such that risk premium > insurance premium.

- Risk neutral & risk loving farmers will:
 - Always prefer no-insurance
 - Highest variance;
 - Loading \rightarrow Highest E(Y)
Expected Utility Theory

Graph showing the relationship between income and utility for different probability distributions.

- **EU**: Expected Utility
- **Prob.**: Probability
- **Income**: Range from 0 to 30
- **Lump Sum**
- **Linear**
- **None**

The graph illustrates how utility changes with income under different probability distributions.
EUT Departure 1: Subjective Probability Weights

- People tend to:
 - Overweight small probabilities;
 - Underweight larger probabilities.

- Probability weighting function from Prelec (1998):
 \[w(p) = \exp(-(-\ln(p)^\alpha)) \]

- Cumulative Prospect Theory (Kahneman & Tversky, 1992) transform \(w(p) \) into decision weights that:
 - Sum to 1;
 - Maintain monotonicity.
Impact of Prob. Weighting on Insurance Demand

- In each option, relatively bad outcomes are lower prob.;
- Thus expected utility falls for ALL options as $\alpha \to 0$
- Linear becomes relatively more attractive because it truncates lowest outcomes
Impact of Probability Weighting: Summary

- \(\gamma^* \) is CRRA such that indifferent between Linear & No contracts;

- \(\frac{\partial \gamma^*}{\partial \alpha} > 0 \)
 - As \(\alpha \) falls from 1 to 0,
 - Linear becomes relatively more attractive
 - So marginally less risk averse people prefer Linear
 - As \(\alpha \) increases above 1
 - Overweight high prob events;
 - Linear becomes less attractive;
 - Eventually prefer Lump Sum (area C).

- Demand Flip-floppers?
 - E: None (EUT) \(\rightarrow \) Linear (CPT)
 - D: Linear (EUT) \(\rightarrow \) None (CPT)
 - C: Linear (EUT) \(\rightarrow \) Lump Sum (CPT)
Utility function “reflected” around reference point, R.

Risk averse behavior over “gains”

Risk loving behavior over “losses”

How does Reflection affect insurance demand?

- Depends where R is…
- (Wouter’s Proposition 5)
Low R → Insurance evaluated over “gains”
High R ➔ Insurance evaluated over “losses”
Intermediate R \rightarrow Insurance evaluated over “gains” & “losses”
Impact of Reference Point: Summary

- As R increases:
 - Relatively more insured outcomes evaluated over losses;
 - Lump sum becomes relatively more attractive than linear;
 - Eventually no-insurance dominates

- In intermediate range (insured outcomes over both losses & gains), any ranking can obtain;
Departure #3: Loss Aversion (λ)

- $u(Y) = (Y-R)^{1-\gamma}$ if $Y > R$
- $u(Y) = -(\lambda(R-Y)^{1-\gamma})$ if $Y > R$

- λ introduces asymmetry in magnitude of loss and gain of given size;

- $\lambda > 1$ \rightarrow Loss hurts more than a gain of equal size gain.

- How does λ affect insurance demand?
 - It depends on R (Wouter’s Proposition 6 😋)
$R < 12.9 = Apq(T - \pi)$

- **Impact of $\uparrow\lambda$ on EU:**
 - No effect under LC;
 - Falls under LS;
 - Falls more under NC.

- **Impact of $\uparrow\lambda$ on demand:**
 - Can flip from LS \rightarrow LC or NC \rightarrow LC if LS initially preferred.
 - No impact if LC initially preferred.
\[R = 12.9 + \varepsilon = Apq(T-\pi) + \varepsilon \]

- **Impact of \(\uparrow \lambda\) on EU:**
 - Falls under LSC;
 - Falls more under NC;
 - Falls less under LC (b.c. losses under LC are very small)

- **Impact of \(\uparrow \lambda\) on demand (same):**
 - Makes LC relatively more attractive than LSC.
 - Can flip from LS \(\rightarrow\) LC or NC \(\rightarrow\) LC if LS initially preferred.
\[R = 12.9 + \varepsilon = Apq(T - \pi) + \varepsilon \]

- **Impact of \(\uparrow \lambda \) on EU:**
 - Falls under LS;
 - Falls more under NC;
 - Also falls more under LC (b.c. as \(R \) shifts right, payout at 12.9 becoming larger and larger loss)

- **Impact of \(\uparrow \lambda \) on demand (same):**
 - Makes LSC relatively more attractive than both LC and NC.
 - Can flip from LC \(\rightarrow \) LS or NC \(\rightarrow \) LS if LS initially preferred.
CPT Summary

- **Probability weighting** (α)
 - Over-weighting low probability events makes both insurance contracts more attractive;
 - As over-weighting increases (i.e., α falls from 1 towards 0), linear contract becomes relatively more attractive than lump sum.

- **Reflection and Reference point** (R)
 - Reflection turns risk averse farmers into risk seekers over losses
 - $\uparrow R \rightarrow$ Lump sum becomes relatively more attractive than linear

- **Loss Aversion**
 - $\uparrow \lambda \rightarrow$ Makes lump sum more attractive than linear if $R < R^*$
 - $\uparrow \lambda \rightarrow$ Makes linear more attractive than lump sum if $R > R^*$

- So…anything can happen! If only we knew the value of farmers’ preference parameters??!!
Framed field experiments in Pisco
First Activity: Preference Parameter Elicitation

- Farmers play 3 unframed lottery games;

- In each lottery, observe “switch point” between two options;

- The three switch points determine farmer-specific values of: γ, α, λ
Preference Parameters

- Method from Tanaka et. al. (AER 2010).

- Farmers play 3 unframed lottery games;

- In each lottery, observe “switch point” between two options;

- Three switch points determine farmer-specific values of: γ, α, λ
Second Activity: Two Insurance Demand Games

- **Game over gains:**
 - 5 yield outcomes (values and probabilities as described above).
 - Game payouts framed as revenues, thus always positive.

- **Game over losses:**
 - Same yield outcomes and probabilities.
 - Payouts framed as profits.
 - If yields fall below 32 qq/ha, revenues don’t cover costs → losses.
 - Operationalized by giving farmer a 16 S/. “coupon”
 - It’s their “reward” for playing this new game.
 - If they suffer a loss, they **must pay us** out of their coupon.
 - Makes farmer suffer/experience a true loss;
 - Makes real payoffs identical across the two games;
 - Avoids real out-of-pocket losses;

- Thus we force the Reference Point to = 0 in both games.

<table>
<thead>
<tr>
<th>Probabilidades (pelotas) de cada evento</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
<td>17</td>
<td>15</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rendimiento</th>
<th>8 qq/ha</th>
<th>16 qq/ha</th>
<th>24 qq/ha</th>
<th>32 qq/ha</th>
<th>60 qq/ha</th>
</tr>
</thead>
</table>

Opción A: S/. 4 000
Opción B: S/. 12 900
Opción C: S/. 6 200

2. Su decisión final: Opción

<table>
<thead>
<tr>
<th>Probabilidades (pelotas) de cada evento</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
<td>17</td>
<td>15</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rendimiento</th>
<th>8 qq/ha</th>
<th>16 qq/ha</th>
<th>24 qq/ha</th>
<th>32 qq/ha</th>
<th>60 qq/ha</th>
</tr>
</thead>
</table>

Opción A: S/. -12 000 S/. -8 000 S/. -4 000 S/. cero S/. 14 000
Opción B: S/. -3 100 S/. -3 100 S/. -3 100 S/. -3 100 S/. 10 900

4. Su decisión final: Opción
Nubia is describing payoffs from Lump Sum contract ("Option C") under gains.
View of games under Prospect Theory (Fixed Reference Point at Zero)
Randomly selected 30 irrigation sub-sectors in Pisco;

Invitations delivered to 50 cotton farmers in each sub-sector (hoping that 20 would show up);

Sample size = 480 farmers (16/sub-sector);

One session per day;

Fieldwork: November - December, 2011.
Farmer Mean Characteristics

- **Socio-economic**
 - Age: 53 years
 - Male: 78%
 - Area operated: 5.3 ha.
 - Cotton experience: 8.5 years

- **Preference Parameters**
 - γ: 0.56 (Risk Aversion)
 - α: 0.72 (Probability Weighting)
 - λ: 2.90 (Loss Aversion)

- **One session per day;**

- **Fieldwork:** November - December, 2011.
Marginal Distribution: Risk Aversion (γ)
Marginal Distribution: Probability Weighting

Probability weighting α coefficient

Prelec

Percent

alpha

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
Marginal Distribution: Loss Aversion

Loss aversion coefficient λ
Predictions Under Expected Utility Theory
(mean parameter values reported in each cell)

<table>
<thead>
<tr>
<th>Choice in LOSSES game</th>
<th>Choice in GAINS game</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Insurance</td>
</tr>
<tr>
<td>No Insurance</td>
<td>N=118</td>
</tr>
<tr>
<td></td>
<td>$\gamma = 0.00$</td>
</tr>
<tr>
<td>Linear</td>
<td>N=0</td>
</tr>
<tr>
<td></td>
<td>$\gamma = 0.58$</td>
</tr>
<tr>
<td>Lump Sum</td>
<td>N=0</td>
</tr>
</tbody>
</table>
Predictions Under Prospect Theory
(mean parameter values reported in each cell)

<table>
<thead>
<tr>
<th>Choice in LOSS Game</th>
<th>Choice in GAINS game</th>
<th>None</th>
<th>Linear</th>
<th>Lump Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>N=25</td>
<td>N=10</td>
<td>N=0</td>
</tr>
<tr>
<td></td>
<td>γ=-.006</td>
<td>γ=.245</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>α=1.01</td>
<td>α=.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>λ=.58</td>
<td>λ=.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>N=44</td>
<td>N=131</td>
<td>N=0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ=-.36</td>
<td>γ=.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>α=.69</td>
<td>α=.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>λ=2.15</td>
<td>λ=3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lump Sum</td>
<td>N=118</td>
<td>N=221</td>
<td>N=0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ=.33</td>
<td>γ=.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>α=1.22</td>
<td>α=.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>λ=3.56</td>
<td>λ=2.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Observed Choices
(mean parameter values reported in each cell)

<table>
<thead>
<tr>
<th>Choice in LOSSES game</th>
<th>None</th>
<th>Linear</th>
<th>Lump Sum</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice in GAINS game</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>N=82</td>
<td>N=19</td>
<td>N=18</td>
<td>N=119</td>
</tr>
<tr>
<td>γ=.55</td>
<td></td>
<td>γ=.50</td>
<td>γ=.21</td>
<td></td>
</tr>
<tr>
<td>α=.71</td>
<td></td>
<td>α=.73</td>
<td>α=.66</td>
<td></td>
</tr>
<tr>
<td>λ=2.3</td>
<td></td>
<td>λ=2.1</td>
<td>λ=2.4</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>N=35</td>
<td>N=124</td>
<td>N=64</td>
<td>N=223</td>
</tr>
<tr>
<td>γ=.54</td>
<td></td>
<td>γ=.43</td>
<td>γ=.41</td>
<td></td>
</tr>
<tr>
<td>α=.63</td>
<td></td>
<td>α=.70</td>
<td>α=.70</td>
<td></td>
</tr>
<tr>
<td>λ=2.7</td>
<td></td>
<td>λ=3.3</td>
<td>λ=3.1</td>
<td></td>
</tr>
<tr>
<td>Lump Sum</td>
<td>N=30</td>
<td>N=30</td>
<td>N=78</td>
<td>N=138</td>
</tr>
<tr>
<td>γ=.48</td>
<td></td>
<td>γ=.38</td>
<td>γ=.37</td>
<td></td>
</tr>
<tr>
<td>α=.70</td>
<td></td>
<td>α=.79</td>
<td>α=.74</td>
<td></td>
</tr>
<tr>
<td>λ=3.4</td>
<td></td>
<td>λ=3.9</td>
<td>λ=2.8</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>N=147</td>
<td>N=173</td>
<td>N=160</td>
<td>N=480</td>
</tr>
</tbody>
</table>
Linear probability model for choice over gains
Dependent Variable = Buy any insurance?

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ins1</td>
<td></td>
</tr>
<tr>
<td>crrac (γ)</td>
<td>0.184***</td>
</tr>
<tr>
<td></td>
<td>(3.512)</td>
</tr>
<tr>
<td>alpha</td>
<td>-0.0454</td>
</tr>
<tr>
<td></td>
<td>(-0.578)</td>
</tr>
<tr>
<td>Bad shock in ultimate trial round</td>
<td>-0.107</td>
</tr>
<tr>
<td></td>
<td>(-1.540)</td>
</tr>
<tr>
<td>Bad shock in penultimate trial round</td>
<td>-0.0129</td>
</tr>
<tr>
<td></td>
<td>(-0.206)</td>
</tr>
<tr>
<td>male</td>
<td>-0.0210</td>
</tr>
<tr>
<td></td>
<td>(-0.393)</td>
</tr>
<tr>
<td>Q9: age</td>
<td>-0.00239</td>
</tr>
<tr>
<td></td>
<td>(-1.148)</td>
</tr>
<tr>
<td>Q10: Education</td>
<td>-0.0273***</td>
</tr>
<tr>
<td></td>
<td>(-4.392)</td>
</tr>
<tr>
<td>Q17: Plots</td>
<td>-0.0778**</td>
</tr>
<tr>
<td></td>
<td>(-2.176)</td>
</tr>
<tr>
<td>Q18: Area</td>
<td>0.00213</td>
</tr>
<tr>
<td></td>
<td>(0.622)</td>
</tr>
<tr>
<td>Q20: Years cotton</td>
<td>-0.00120</td>
</tr>
<tr>
<td></td>
<td>(-0.141)</td>
</tr>
<tr>
<td>Q22: Cotton av yield</td>
<td>-0.000465</td>
</tr>
<tr>
<td></td>
<td>(-0.257)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.730***</td>
</tr>
<tr>
<td></td>
<td>(4.006)</td>
</tr>
</tbody>
</table>

Observations 471
R-squared 0.088
What to make of this? Where to go next?

- First descriptive look not very satisfying
 - No clear “stories” to tell that would be consistent with EUT vs. CPT;
 - Risk Aversion result wrong direction

- Relative predictive power?
 - EUT:
 - In Gains Game: 32% predicted correctly
 - In Losses Game: 40% predicted correctly
 - 12% of joint outcomes predicted correctly
 - CPT:
 - In Gains Game: 31% predicted correctly
 - In Losses Game: 35% predicted correctly
 - 14% of joint outcome predicted correctly
What to make of this? Where to go next?

- **Caveats**
 - Are farmers bringing in alternative framings or “Reference Points”?
 - Example: I consider any yield < 60 qq/ha a “loss”
 - Risk Aversion result wrong direction:
 - Is insurance more like “technology adoption”?

- **Next steps**
 - Explore alternative functional forms;
 - Basic multi-nominal regressions;

- **Other suggestions?**