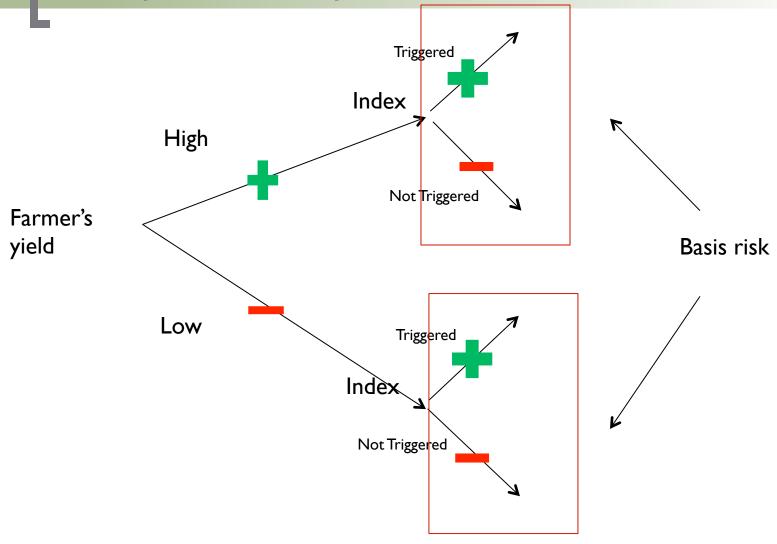
Compound risk and index insurance: a WTP experiment in Mali

Ghada Elabed (with Michael Carter and Marc Bellemare)


Department of Agricultural and Resource Economics UC Davis 14 technical workshop, June 2012

Introduction

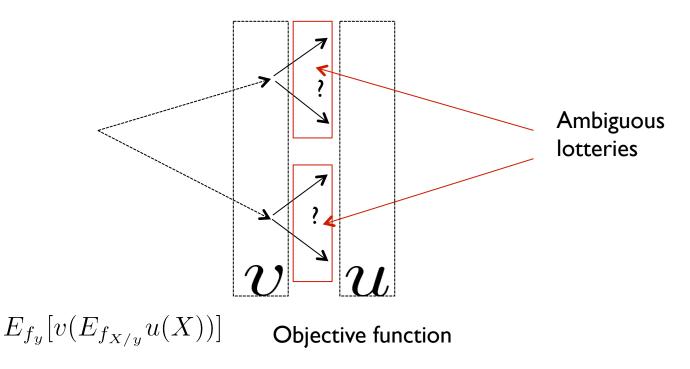
Introduction

- Index insurance is promising in theory (transaction costs, moral hazard, ..)
- In practice, low uptake despite efforts
 - Lack of trust
 - Lack of understanding
 - Design of the index itself
- Basis risk and how it is perceived by farmers

Index insurance from the farmer's point of view: a compound lottery:

Introduction

Background: People dislike probabilistic insurance

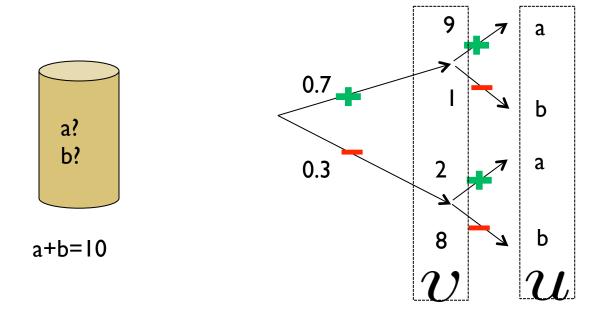

- Empirical evidence: Whakker et al.(1997): They demand more than 20% reduction in the premium to compensate for 1% default risk
- One explanation: the weighting function of prospect theory
- Our explanation: violation of reduction of compound lottery axiom (ROCL)

Introduction

Compound lotteries and ambiguity aversion

- The compound lottery structure is a potential source of ambiguity
- Segal (1987), Haveley (2007), Abdellaoui et al (2011): attitudes towards compound risk and towards ambiguity are tightly associated

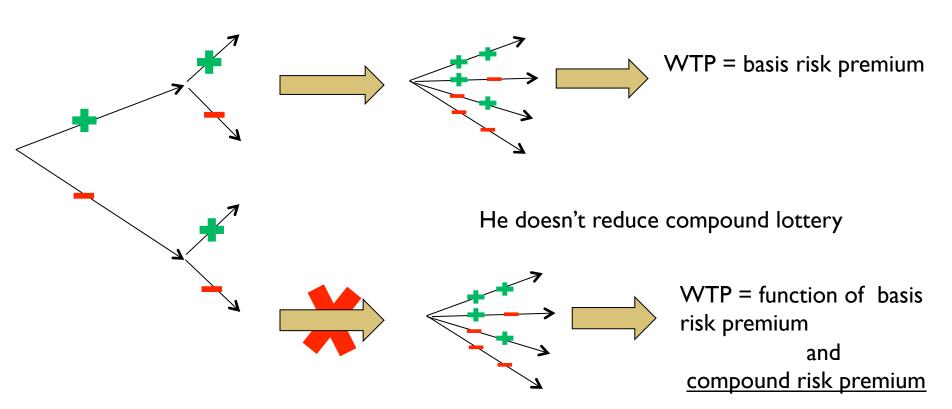
Ambiguity as aversion to compound lotteries: Smooth model of ambiguity aversion



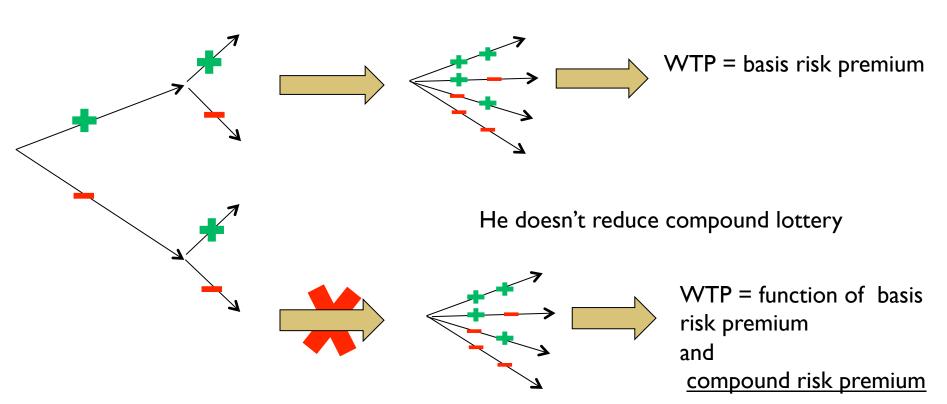
External function: attitude towards "ambiguity"

 ${\cal U}$ Internal function: attitude towards "simple" risk

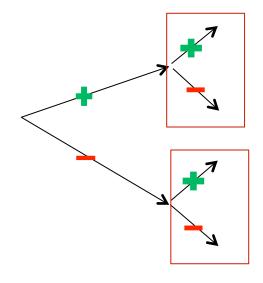
$$v' > 0$$
 $v'' \le 0$


Modeling aversion to compound risk: a numerical example

$$E_{f_y}[v(E_{f_{X/y}}u(IX))] = 0.7 * v[0.9u(a) + 0.1u(b)] + 0.3 * v[0.2u(a) + 0.8u(b)]$$

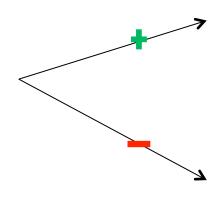

Framework: How does a farmer think about Index insurance?

He reduces compound lottery


Framework: How does a farmer think about Index insurance?

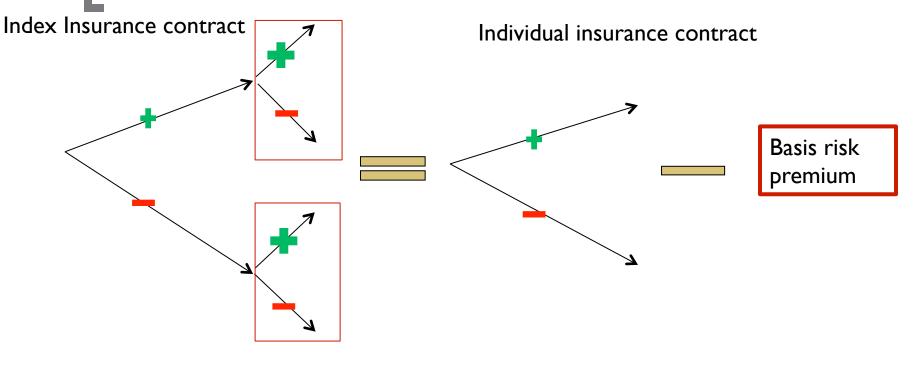
He reduces compound lottery

Notations


Index Insurance contract

 y_{IX} Farmer's revenue

 f_{Y} pdf of the yield f_{X} pdf of the index

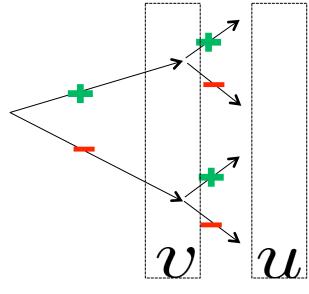

Individual insurance contract

 y_I Farmer's revenue

 f_y pdf of the yield

EUT: WTP = Basis risk premium

objective function $E_{f_{yx}}u(y_{IX})$

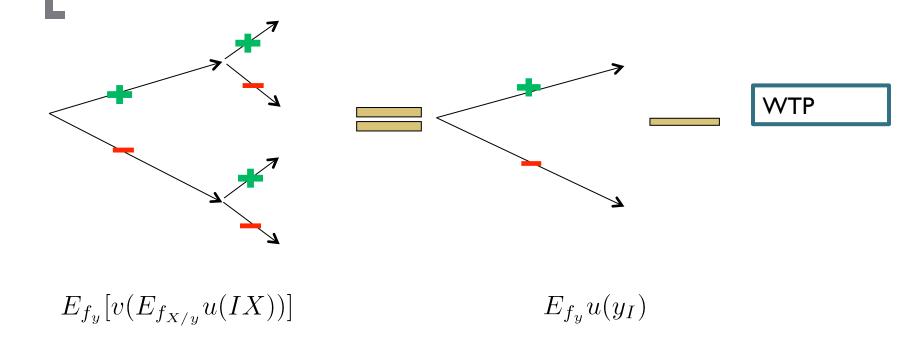

 $E_{f_y}u(y_I)$

Basis risk premium, ρ , is solution to :

$$E_{f_{yx}}u(y_{IX})=E_{f_y}u(y_I-\rho)$$

Our approach

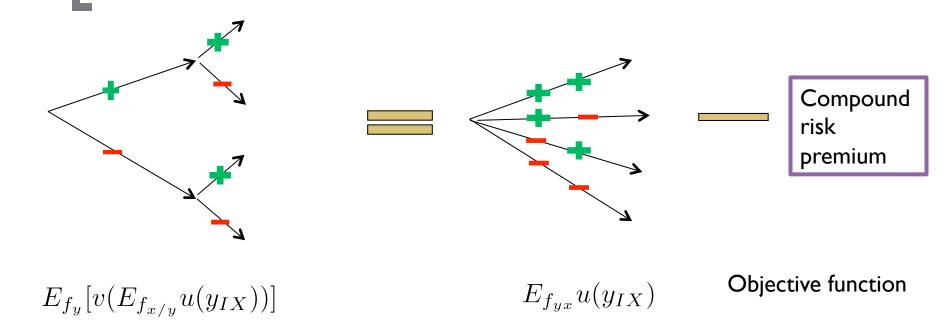
Modeling aversion to compound risk


 $E_{f_u}[v(E_{f_{X/u}}u(IX))]$ Objective function

External function: attitude towards "compound" risk

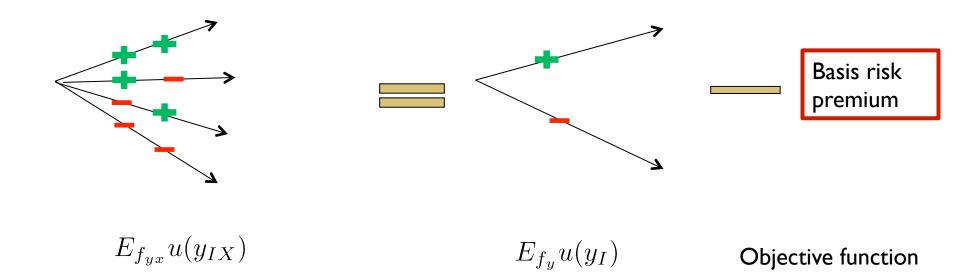
 ${\cal U}$ Internal function: attitude towards "simple" risk

$$v' > 0$$
 $v'' \le 0$


WTP to avoid Index Insurance

The WTP to avoid index insurance:

$$E_{f_y}[v(E_{f_{X/y}}u(IX))] = E_{f_y}u(y_I - \rho^t)$$


Compound risk premium

Compound risk premium, ρ^c , as a solution to :

$$E_{f_y}[v(E_{f_{X/y}}u(y_{IX}))] = E_{f_y}u(y_{IX} - \rho^c)$$

Basis risk premium

Basis risk premium, ρ , as a solution to :

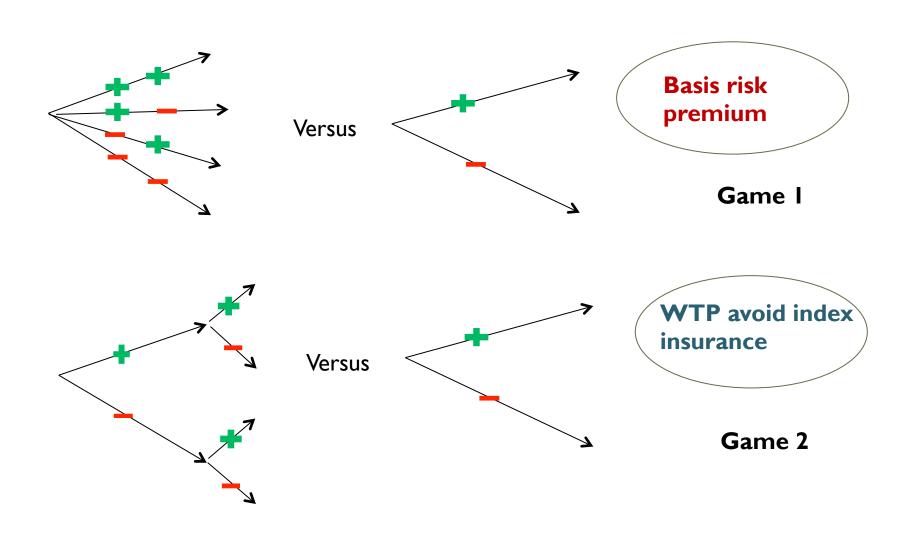
$$E_{f_{yx}}u(y_{IX})=E_{f_y}u(y_I-\rho)$$

Introduction

Testable hypothesis

If u is CRRA, then the 2nd order Taylor approximation of total WTP is:

$$\left(\frac{\bar{y_I}}{r} + \rho^t\right)^2 \simeq \left(\frac{\bar{y_I}}{r} + \rho\right)^2 + \left(\frac{\bar{y_{IX}}}{r} + \rho^c\right)^2 - \left(\frac{\bar{y_{IX}}}{r}\right)^2$$


WTP

Basis risk premium

Compound risk premium:

- If averse to compound risk, then
 WTP is larger than basis risk premium
- If neutral to compound risk, then WTP is the same as the basis risk premium

The experiments

Game

- Farmers decide whether they want an individual insurance contract, if so they choose among 6 coverage levels
- Assuming CRRA and EUT, we can derive the WTP to avoid index insurance, which is also the basis risk premium

Game 2

Presenting the index insurance contract:

- Keep the price of the index insurance contract constant, vary the price of the individual insurance contract
- Elicit he price at which he will switch from the individual insurance contract to the index insurance contract

Preliminary results

- 60% of the farmers are averse to compound risk
- They are willing to pay up to 27% extrapremium for an individual insurance contract to compensate for 20% probability of absence of payment.

Policy implications

- cost effectiveness of index insurance
- Implications for impact evaluation of index insurance :
 - heterogeneity of farmers implies heterogeneous impacts
 - Offer alternative contracts for compound risk averse farmers?

Next step:

- More empirical work
- Predict the uptake of index insurance using the findings of the experiments

Thank you!

APPENDIX

The Basis risk premium

$$E_{f_{yx}}u(y_{IX})=E_{f_{y}}u(y_{I}-\rho)$$

2nd order Taylor approximation:

$$Eu(y_{IX}) \approx u(\bar{y}_{IX}) + \frac{1}{2}\sigma_{y_{Ix}}^2 u"(\bar{y}_{IX})$$

$$Eu(y_I - \rho) \approx u(\bar{y}_I) - \rho * u'(\bar{y}_I) + \frac{1}{2}(\rho^2 + \sigma_{\bar{y}_I}^2)u''(\bar{y}_I)$$

Solving for basis risk premium:

$$\rho \approx \frac{u'(\bar{y_I}) - \sqrt{\Delta}}{u''(\bar{y_I})}$$

$$\Delta = (u'(\bar{y}_I))^2 - 2 * u"(\bar{y}_I)[u(\bar{y}_I) - u(\bar{y}_{IX}) + \frac{1}{2}\sigma_{y_I}^2 u"(\bar{y}_I) - \frac{1}{2}\sigma_{y_{IX}}^2 u"(\bar{y}_{IX})]$$

The Compound risk premium

$$E_{f_y}[v(E_{f_{X/y}}u(y_{IX}))] = E_{f_y}u(y_{IX} - \rho^c)$$

2nd order Taylor approximation:

$$E_{f_{y}}[v(E_{f_{X/y}}u(y_{IX}))] \approx v(u(y_{IX}^{-}) + \frac{1}{2}\sigma_{y_{IX}}^{2}v"(u(y_{IX}^{-})(u'(y_{IX}^{-}))^{2} + \frac{1}{2}\sigma_{y_{IX}}^{2}v'(u(y_{IX}^{-}))u"(\bar{y}_{IX})$$

$$Eu(y_{IX} - \rho^c) \approx u(\bar{y}_{IX}) - \rho^c * u'(y_{IX}) + \frac{1}{2}(\rho^{c2} + \sigma_{\bar{y}_{IX}}^2)u''(y_{IX})$$

Solving for compound risk premium:

$$\rho^c \approx \frac{u'(y_{\bar{I}X}) - \sqrt{\Delta^c}}{u''(y_{\bar{I}X})}$$

$$\Delta^{c} = (u'(y_{Ix}))^{2} - 2*u"(y_{Ix}^{-})[u(y_{Ix}^{-}) - v(u(\bar{y}_{IX})) + \frac{1}{2}\sigma_{y_{Ix}}^{2}u"(y_{Ix}^{-}) - \frac{1}{2}\sigma_{y_{\bar{I}X}}^{2}v"(u(y_{\bar{I}X}))(u'(y_{\bar{I}X}))^{2} - \frac{1}{2}\sigma_{y_{\bar{I}X}}^{2}v'(u(y_{\bar{I}X}))u"(\bar{y}_{Ix})]$$

Introduction

$$E_{f_y}[v(E_{f_{X/y}}u(IX))] = E_{f_y}u(y_I - \rho^t)$$

2nd order Taylor approximations:

$$E_{f_{y}}[v(E_{f_{X/y}}u(IX))] \approx v(u(y_{IX}^{-}) + \frac{1}{2}\sigma_{y_{IX}}^{2}v"(u(y_{IX}^{-})(u'(y_{IX}^{-}))^{2} + \frac{1}{2}\sigma_{y_{IX}}^{2}v'(u(y_{IX}^{-}))u"(\bar{y}_{IX})$$

$$Eu(y_I - \rho^t) \approx u(\bar{y}_I) - \rho^t * u'(\bar{y}_I) + \frac{1}{2}(\rho^{t2} + \sigma_{\bar{y}_I}^2)u''(\bar{y}_I)$$

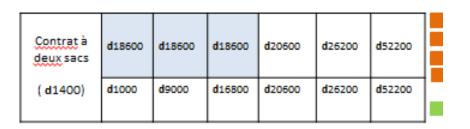
Solving for WTP:

$$ho^t pprox rac{u'(ar{y_I}) - \sqrt{\Delta^t}}{u''(ar{y_I})}$$

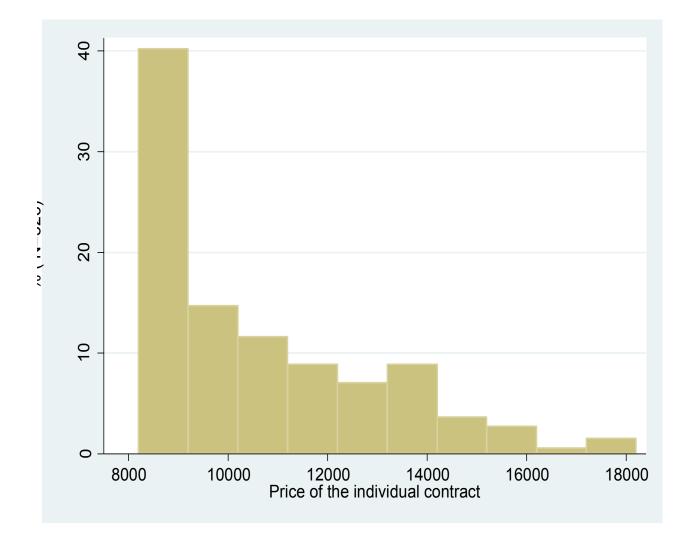
$$\Delta^{t} = (u'(y_{I}))^{2} - 2 * u"(\bar{y_{I}})[u(\bar{y_{I}}) - v(u(\bar{y}_{IX})) + \frac{1}{2}\sigma_{y_{I}}^{2}u"(\bar{y_{I}}) - \frac{1}{2}\sigma_{y_{\bar{I}X}}^{2}v"(u(y_{\bar{I}x})(u'(y_{\bar{I}x}))^{2} - \frac{1}{2}\sigma_{y_{IX}}^{2}v'(u(y_{\bar{I}X}))u"(\bar{y}_{Ix})]$$

The yield distribution

Game I


Game II: Eliciting the WTP

d 1740	d18260	d18260	d18260	d20260	d25860	d51860
d 1940	d18060	d18060	d18060	d20060	d25660	d51660
d 2140	d17860	d17860	d17860	d19860	d25460	d51460
d 2340	d17660	d17660	d17660	d19660	d25260	d51260
d 2540	d17460	d17460	d17460	d19460	d25060	d51060
d 2740	d17260	d17260	d17260	d19260	d24860	d50860
d 2940	d17060	d17060	d17060	d19060	d24660	d50660
d 3140	d16860	d16860	d16860	d18860	d24460	d50460
d 3340	d16660	d16660	d16660	d18660	d24260	d50260
d 3540	d16460	d16460	d16460	d18460	d24060	d50060


The index insurance contract

Contrat à trois cube	d18260	d18260	d18260	d20260	d25860	d51860
(d1740)						

Preliminary results

