Communication, Search and Mobile Phones

Brian Dillon (University of Washington)
Adalbertus Kamanzi (Institute of Rural Development and Planning)
Jenny C. Aker (Tufts University)
Joshua Blumenstock (University of Washington)
November 7, 2014
Overview of Talk

• Motivation and Research Question
• Context and Intervention
• Sampling and Experimental Design
• Data and Outcomes
• Progress to Date and Next Steps
Motivation

Dillon, Kamanzi, Aker and Blumenstock

Kichabi
Motivation

• Information is costly, especially in remote rural areas
 o Costly information can lead to inefficient market outcomes

• Mobile phones have reduced the costs of searching for information and improved market efficiency, but how these gains are distributed is poorly understood
 o Empirical evidence on the impacts on agricultural outcomes is mixed (Fafchamps and Minten 2012, Cole and Fernando 2012, Casaburi et al 2014, Aker and Ksoll 2013)

• Why?

Motivation

• The reduction in search costs associated with mobile phones is typically constrained by the size of one’s social network
 o Mobile phones reduce the cost of communicating within a social network, but their impacts on searching for new contacts is based on pre-existing social connections
 o An issue for firms and households
• In many countries, this constraint has been partially addressed by providing an “information clearinghouse” (telephone directory or the internet)
• In sub-Saharan Africa, mobile phones have proliferated without a complementary service providing information about other members of the network
• How can this be overcome?
Research Question

• **Research Question:** How do information constraints related to household-agricultural firm communications affect firms’ and households’ behavior and productivity?

• **Approach:** Randomly vary households’ access to an informational tool (a mobile phone directory of agricultural firms) that lowers households’ search costs, as well as firms’ access to potential clients.

• **Outcomes and mechanisms:** Revenues, profits, number of employees, number of customers, number of calls, sales volume.

• **Our project:** A proof of concept to see how and whether a reduction in households’ search costs affects firms’ profits.

Dillon, Kamanzi, Aker and Blumenstock, Kichabi
Agricultural Markets in Tanzania

• Purchased inputs are available at trading towns and larger villages
 • Stock-outs are frequent, especially for improved seeds and agro-chemicals
• Other inputs (labor, animals, tractors) are available but access is mediated (almost entirely) by face-to-face contacts
• Focus groups and previous survey work indicate that
 • Many farmers incur large transaction costs in searching for inputs
 • Mobile phones are rarely used for business purposes
 • Few farmers have access to phone numbers of individuals that they have not met face-to-face
• From the firm perspective, there are few mechanisms for advertising services
Intervention: Kichabi

- Kitabu cha biashara
- A mobile phone directory of all agricultural firms within a given area
Intervention: Kichabi

• Conduct a census of all agricultural-related formal and informal firms in trading towns (villages) in central Tanzania
 o These include agricultural input suppliers, output sellers, transporters, laborers and pharmacies (eight sectors)
 o Collect data on their name, ownership status, firm size, sector (service), location and contact information

• Produce a mobile phone directory listing (a subset of) firms

• Distribute directories to agricultural households

• The treatment will affect both firms and agricultural households, although we will primarily be focusing on firm-level outcomes at this stage
Sampling

- Six districts (27 contiguous wards) and 108 villages in the Dodoma and Manyara regions
- Of the 108 villages, we chose 49 villages (with 136 sub-villages) in which to conduct the firm census (“Group A”) – based upon minimum population size
 - Remaining villages are “Group B”
- Within these 49 villages, we conducted a census of all informal and formal agricultural firms across eight sectors
 - 1506 firms participated (about 70 percent take-up)
 - After cleaning = 1495 firms
- 1/3 of these firms were sampled for the baseline (after stratifying by village and sector)
<table>
<thead>
<tr>
<th>Sector</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading and Wholesale</td>
<td>244</td>
<td>16.32</td>
</tr>
<tr>
<td>Merchant/Retail</td>
<td>704</td>
<td>47.09</td>
</tr>
<tr>
<td>Transport</td>
<td>61</td>
<td>4.08</td>
</tr>
<tr>
<td>Hiring and Labor</td>
<td>41</td>
<td>2.74</td>
</tr>
<tr>
<td>Agri Processing</td>
<td>114</td>
<td>7.63</td>
</tr>
<tr>
<td>Repairs</td>
<td>188</td>
<td>12.58</td>
</tr>
<tr>
<td>Non-Agri Services</td>
<td>102</td>
<td>6.82</td>
</tr>
<tr>
<td>Financial Services</td>
<td>35</td>
<td>2.34</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>0.40</td>
</tr>
<tr>
<td>Total</td>
<td>1,495</td>
<td></td>
</tr>
</tbody>
</table>
Characteristics of Firms in our Census

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean</th>
<th>s.d.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respondent is male (=1)</td>
<td>0.82</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Respondent age</td>
<td>37.96</td>
<td>11.33</td>
<td>15</td>
<td>76</td>
</tr>
<tr>
<td>No. of employees</td>
<td>1.35</td>
<td>3.74</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>Own mobile (=1)</td>
<td>0.99</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Motivation

Source: GSMA 2009

Dillon, Kamanzi, Aker and Blumenstock

Kichabi
Proposed Experimental Design

- First stage: Stratify by district and ward and randomly assign villages to either treatment (list some firms in that village) or control (no firms listed)
- Second stage: Within treatment villages, stratify by sector and randomly assign sub-village sectors (firms) to be included in the directory or not
 - Choice based in part on research questions, cost, feasibility of randomization
- Distribute directories to all villages (Group A plus Group B)
- Compare outcomes of firms in treatment villages with those in control villages
- Compare outcomes of control firms in treatment villages with control firms in control villages (within-village spillovers)
- We will be unable to measure for between-village spillovers
Proposed Experimental Design

• Across 49 villages and with 8 sectors, we have 400 strata (actually 300), or 5 firms per strata
• Within the strata we have 516 clusters (sub-village sector groups), or 2 clusters per stratum
• Within each cluster, have 3 firms (varies by sector)
Data and Outcomes

• Baseline survey (October)
• Follow-up survey (May-July)
• Phone surveys (maybe)
• Firm-level outcomes
 • Direct: Number of calls, number of contacts, foot traffic
 • Indirect: Sales, revenue, employment, inventories
• Firm census completed
• Baseline firm survey completed
• Randomization in process
• Phonebooks in the process of being printed
Next Steps

- Finalize directory printing and distribution
- Organize firm phone surveys
- Plan for follow-up surveys