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Caveats 

¨  This is just a starting point to get us started thinking 
about particular challenges of impact evaluation. 

¨  Many other empirical approaches feasible beyond 
randomization and encouragement design. 

¨  Many other practical issues I won’t address: 
¤ Optimal level of randomization; 
¤ Risk of weak instruments; 
¤ Power calculations and minimum sample sizes; 
¤  ... 



Essential Heterogeneity  

¨  There are many farmer characteristics that are difficult to 
measure and affect farmers’ valuation of insurance 
¤  βi, wealth, risk preferences, risk sharing networks, … 

¨  This unobserved heterogeneity thus drives heterogeneity in: 
¤  Farmers’ insurance purchase decision; 
¤  Farmer-specific impact of insurance. 

¨  Causes problem in estimating casual impact of insurance 
¤  Farmers self select into purchasing insurance; 
¤ Uninsured are systematically different -- and thus not good CF 

-- for insured. 



Partial Compliance 

¨  Doesn’t randomization of the treatment solve this problem? 
¨  Yes…if we had full compliance: 

¤  Everyone in the treatment group actually gets treated; 
¤  No one in the control group gets treated. 

¨  Might expect full compliance in some situations: 
¤  CCT’s: 

n  Treatment is receiving money, so everyone in treatment group takes it; 
n  Govt. has ability to deny access to similar people in control communities; 

¨  But full compliance very unlikely with insurance programs: 
¤  We’ve already seen demand-side reasons: 

n  Take-up rates are low, even with subsidized premiums à many in “treatment” group 
don’t take the treatment; 

¤  Institutional/supply-side reasons:  
n  Hard to convince insurers to deny insurance to farmers in control group à some in 
“control” group do take treatment (Pisco example from this morning). 



Encouragement Design 

¨  So if we want to learn about the impacts of insurance, 
we must deal with partial compliance. 

¨  One strategy is to use encouragement design. 
¨  Instead of randomizing the treatment, we randomize 

the distribution of incentives (“instruments”) that affect 
the probability that farmers buy insurance. 

¨  Examples of potential instruments: 
¤  Invitations to participate in educational sessions Marketing 

intensity (radio ads in some areas but not others) 
¤ Coupons (price variation)  



Rest of talk: 
Elements of a Research Design 

¨  Demonstrate essential heterogeneity via simple model of 
insurance demand; 

¨  Use this simple model to introduce basic idea of 
encouragement design; 
¤  In particular, what characteristics do we need in our 
“instruments” in order to be able to really attribute impact 
to insurance. 

¨  Pitfalls and limitations of encouragement design, 
especially when essential heterogeneity is large (lots of 
non-linearities in impact function). 



Model of Insurance Demand 
(Miranda 1991) 

¨  Assume farmers’ only source of income and 
consumption is farming; 

¨  Yield is only source of risk; 
¨  Yield is exogenous à Farmers’ only choice is to 

purchase insurance or not; 
¨  Farmers differ only in basis risk.  
¨  Basis risk represents essential heterogeneity.  It 

determines the value of insurance to the farmer and 
thus: 
¤ Whether or not she’ll buy it and; 
¤  Impact of insurance on farmer. 



Uninsured Income, yi
U 

¨  We can decompose uninsured income into: 

¤  µi : Mean income; 
¤  εc : Deviation of index (area yield) from its mean; 
¤  εi : Idiosyncratic risk uncorrelated with the index 

n  Health shocks, plot specific pests.. 
n  Assume this part of basis risk is same for all farmers; 

¤  βi = Cov(yi
U , εc )/Var(εc ):  Degree of co-movement 

between farmer i’s yield and the index. 
n  Higher is βi , lower is basis risk (varies across farmers) 

 U
i i i c iy µ β ε ε= + +



Insured Income, yi
I 

¨  Farmers have access to index (area yield) insurance 
contract with: 
¤  Indemnity, I, paid when index falls below strikepoint; 
¤ Actuarially fair premium, p; 
¤  Loading, L; 
¤ Coupon that gives price discount ci if farmer buys 

insurance. 
¨  Insured income is thus: 

 I U
i i iy y c p L I= + − − +



Insurance Demand 

¨  Farmer buys insurance if Eu(yi
I) ≥ Eu(yi

U)  

¨  Assume Eu(y) = µ – γVar(y) (mean-variance utility) 
¨  Can show that farmer buys insurance if: 

¨  So β*(c) Defines a critical threshold splitting all those farmers 
with coupon value c into purchasers and non-purchasers. 

¨  A closer look at β*(c) … 
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Intuition Behind  

¨  Among farmers with coupon size ci those with: 
¤ βi ≥ β*(ci):  Insurance provides sufficient consumption 

smoothing (variance reduction) to warrant buying it. 
¤   βi < β*(ci): Insurance provides insufficient consumption 

smoothing, so don’t buy. 
¨  Manipulating coupon allows us to affect Pr(Purchase) 

¤  ∂β*/∂c = c/(2γCov(I,εc)) < 0 
¤ As the coupon rises (price falls) the minimum amount of 

consumption smoothing needed to buy insurance falls; 
¤  Thus fraction of farmers purchasing insurance is increasing in ci 

¨  Illustration: simulate our model using parameters (with some 
tweaking) from Peru… 
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Probability of Insurance Purchase as 
function of Coupon Size 
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Probability of Insurance Purchase as 
function of Coupon Size 
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Pr(Purchase) monotonically 
 increasing in C 



Probability of Insurance Purchase as 
function of Coupon Size 
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Just over 60% of farmers would 
 purchase actuarially fair insurance. 



Initial Look at Impact Heterogeneity 

¨  Vertical axis is average Eu across all farmers (purchasers and non-purchasers) 
with given coupon size; 

¨  Eu is net of coupon value à So we can evaluate impact of actuarially fair 
insurance. 
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Initial Look at Impact Heterogeneity 

¨  For c << 0: Insurance VERY expensive. 

¨  Only the few farmers who get huge variance reduction from insurance buy it.  

¨  A slight reduction in price (increase in coupon) induces some farmers to buy. 

¨  Since price is still very high, new entrants still require large variance reduction  

¨  Since we’re netting out c, average expected utility increases.  (expected 
income remains constant but average variance falls) 
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Initial Look at Impact Heterogeneity 

¨  For c = 0: Insurance is actuarially fair. 
¨  Indifferent farmer has same income variance with versus without 

insurance.  
¨  Marginal change in coupon has no impact on average expected 

utility. 
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Initial Look at Impact Heterogeneity 

¨  For c > 0: Insurance is subsidized (cheaper than actuarially fair). 
¨  The indifferent farmer willing to accept higher income variance 

with insurance because the subsidy raises her expected income.  
¨  Further increases in coupon lower price further, drawing in 

farmers with even lower βi   à average income variance 
increases and thus average EU across all farmers decreases. 
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Part II. An Empirical Strategy 

¨  Partial compliance suggests use of encouragement design to 
learn about average impacts of insurance. 

¨  Heterogeneous impacts (non-linear Expected Outcome 
curve) à challenges and limitations to what we can learn 
about impacts. 

¨  To see this and think about implications for research design, 
we’ll adopt framework from Moffit’s “Estimating Marginal 
Treatment Effects in Heterogeneous Populations” (2008). 

¨  Let’s walk through that framework. 



Potential Outcome Framework 

¨  Outcome variable is Eu(yi) 
¤ Assume we have “Utility-meter” to measure Eu(yi) 
¤  (Of course we could use more realistic outcome variable such 

as investment, income, credit market participation…)  
¤ Observed Eu(yi) is either: 

n Eu(yi
U): Without insurance 

n Eu(yi
I): With insurance (netting out ci) 

¤  di is again binary insurance purchase decision. 

¨  Then we can rewrite our model as: 



¨  Where: 
¤  αi = Eu(yi

U) 

¤  Δi = Eu(yi
I) - Eu(yi

U) 

¨  So in Equation 4: 
¤   αi is outcome without insurance; 
¤ αi + Δi is outcome with insurance; 
¤  Δi is individual-specific impact of insurance. 
¤  We can’t observe Δi, but we want to learn about its distribution. 

¨  Now condition on the instrument value, c, and take expectations 
over all farmers… 
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Identifying Assumptions 

¨  Encouragement design relies on 4 assumptions about 
instrument (c) to identify treatment effects.  

¨    
¤  Independence: Outcome without insurance is independent of 

the instrument (value of the coupon). 
¤ Randomization helps a lot, but not sufficient: 

n Dean’s point: Game sessions as instrument for insurance impact? 
Could affect risk perceptions and behavior of participants who 
don’t buy insurance. 

 ( ) ( ) ( )[ ( ) | ] | | 1, 1| (6)i i i i i i i i iE Eu y c c E c c E d c c P d c cα= = = + Δ = = = =

 ( ) ( ) ( )*| 1| ( ) (7)i i i i i iE d c c P d c c P cβ β= = = = = ≥

 ( 1) ( | )i iA E c cα α= =



Identifying Assumptions 

¨    
¤  Exclusion restriction. 
¤  Average impact of insurance among purchasers is only a function of 

composition of purchasers. 
¤  Instrument has no direct impact on outcome. 
¤  Randomization help a lot, but not sufficient 

n  Example: Insurance information sessions as instrument 
n  If sessions also provide technical assistance, then instrument would have a 

direct impact on outcome variable.  

 ( ) ( ) ( )[ ( ) | ] | | 1, 1| (6)i i i i i i i i iE Eu y c c E c c E d c c P d c cα= = = + Δ = = = =

 ( ) ( ) ( )*| 1| ( ) (7)i i i i i iE d c c P d c c P cβ β= = = = = ≥

( 2) ( | 1, ) ( ( 1| ))i i i i iA E d c c g P d c cΔ = = = = =



Identifying Assumptions 

¨    
¤ Relevance: Instrument has predictive power with respect to 

insurance purchase decision. (Pisco coupons not so good!) 
¨    

¤ Monotonicity: We can order the values of the instrument such 
that moving from one value to the next weakly increases the 
probability of buying insurance for everyone (or weakly 
decreases it for everyone). 

 ( ) ( ) ( )[ ( ) | ] | | 1, 1| (6)i i i i i i i i iE Eu y c c E c c E d c c P d c cα= = = + Δ = = = =

 ( ) ( ) ( )*| 1| ( ) (7)i i i i i iE d c c P d c c P cβ β= = = = = ≥

 ( 3) ( , ) 0i iA Cov c d ≠

 ( ) ( )(A4)    c such that c ,  1| 1|   .j k j k
i i i ic d c c d c c i∀ ≤ = = ≤ = = ∀



Estimable Equations 

¨  The value of Eu(yi) for everyone assigned ci equals: 
¤   Mean outcome without insurance, α plus; 
¤  Average impact of insurance among purchasers in sub-population 

assigned ci = c weighed by; 
¤  Share of this sub-population buying insurance plus; 
¤  (A1) – (A4) à error terms, conditional on ci well behaved. 

¨  Use our parameters from Peru to plot the average of equation 
11 as we vary c, and thus the probability of purchasing 
insurance…  

 ( 1| ) (12)i i i id P d c c u= = = +

 ( ) ( ( 1| ))* ( 1| ) (11)i i i i i iEu y g P d c c P d c c eα= + = = = = +



Expected Outcome Function 

¨  Vertical axis is E[Eu]; 
¨  Horizontal axis is Pr(purchas); 
¨  Coupon increasing from left to right. 
¨  Turning point at .6 (was probability of purchase for c = 0) 
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What Types of Impacts Might we Measure? 

¨  Ideally, we would trace out entire curve. 
¨  Non-linearity and partial compliance make that hard. 
¨  So what things can we learn? 
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Marginal Treatment Effect (MTE) 

¨  Instantaneous change in average outcome due to arbitrarily small 
change in probability of purchasing insurance. 

¨  MTE tells us impact of insurance on very specific type of farmer:  Those 
who are induced to buy when coupon increases from -30 à -30 + 
epsilon 
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Marginal Treatment Effect (MTE) 

¨  Essential heterogeneity à this impact is different across different 
groups. 

¨  Those induced to purchase when coupon goes from 30 to 30 + 
epsilon have much lower β (higher basis risk). 
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Local Average Treatment Effect (LATE) 

¨  Discrete version of MTE between two points. 
¨  LATE tells us the average impact of insurance on the compliers – 

those who would not buy insurance at the higher price (c = -30) 
but would buy at the lower price (c = 30) 

0

5000

10000

15000

20000

25000

0 0.2 0.4 0.6 0.8 1

Pr(Purchase)

E(
Eu
)

LATE(.4,.8	
  )

c	
  =	
  -­‐30 c	
  =	
  30



Local Average Treatment Effect (LATE) 

¨  Essential heterogeneity (non-linearity) à LATE will differ 
depending on the values of the instrument at which it’s evaluated. 
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Treatment Effect on Treated (TT) 

¨  TT gives the average effect of buying insurance on those who 
bought it. 

¨  To estimate TT, empirical support must include Pr(Purchase) = 0.  

¨  Figure shows TT if we randomize offer of actuarially fair insurance 
and strictly deny access to a control group (may not be feasible). 
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Average Treatment Effect (ATE) 

¨  ATE tells us the average effect if everyone were to buy insurance. 
¨  To estimate ATE, empirical support must include Pr(Purchase) = 0 

and Pr(Purchase) = 1.  

¨  Very unlikely in insurance programs.  
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Discussion: Implications for Research Design 



Multi-value Instruments are Important 

¨  Say choose only two coupon values underlying this picture. 
¨  Can do a good job estimating LATE1 
¨  But say we wanted to use these data to estimate full curve? 
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Multi-value Instruments are Important 

¨  Could extrapolate as below 
¨  But that would be pretty misleading. 
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Multi-value Instruments are Important 

¨  And if we had instead used two different coupons 
(giving LATE2), our extrapolation would have wildly 
different. 
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Multi-value Instruments are Important 

¨  If we instead had all four of the coupon values, we could do a 
reasonably good job learning about the shape of the whole function. 

¨  Take-home point:  Non-linearity à Need at least 3 separate instrument 
values if we want to extrapolate beyond LATE’s. 
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Should Consider Policy Relevance when 
Choosing Instrument Values 

¨  Consider offering only two coupons:  A)  c = 0 & c = 30 or  B)  c = 0 & c = 
90. 

¨  Which would give you more policy relevant results? 
¨  A.  Because B requires huge subsidy that is unlikely to be sustainable – or 

desirable – because it costs a lot. 
¨  And we’re learning about impacts of insurance on people who should not be 

insured! 
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Empirical Distribution β Affects What 
We Can Learn 

¨  With disperse distribution… 

¨  Can learn about most of Expected outcome curve 
¨  With tighter distribution, could only trace out 

smaller section of EU curve 
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Summary 

¨  Importance features of agricultural insurance 
¤  Heterogeneous impacts (non-linear E(y) function); 
¤  Partial Compliance 

¨  Implications for research design 
¤  If goal is to trace out full E(y) curve, we need high density along the 

support 
n  Need instrument(s) with multiple values and; 
n  Instruments must be “strong” (really predict demand) 
n  Sparse support requires Herculean assumptions 

¤  Full compliance probably not economically interesting 
n  Includes folks with, on average, negative benefits. 
n  Wouldn’t buy insurance outside our research design (big subsidy) 

¤  External validity highly dependent on instruments 
¨  Efficient design of distribution of instrument values can benefit 

greatly from appeal to theory and ex-ante research. 


