Insights from Behavioral Economics on Index Insurance

Michael Carter

Professor, Agricultural & Resource Economics University of California, Davis Director, BASIS Collaborative Research Support Program

Index Insurance Innovation InitiativeTechnical Committee MeetingWashington, D.C.12 May 2011

Introduction: The Puzzle of Index Insurance

- Standard Index Insurance Contract
 - Linear Payout as fall below strike point
 - Expect demand from risk averse agents under expected utility theory even for this partial insurance
 - Miranda's classic mean-variance treatment
 - Gine's non-linear payouts
 - \rightarrow more better demand
- Despite this strong theoretical expectation, we know that demand often seems tepid—but why?

Figure I—Dual strike-point contract

Area yield index (quintals of cotton)

Introduction: The Puzzle of Index Insurance

- Maintaining expected utility perspective, look for explanations & solutions:
 - Basis risk and poor design (but even partial insurance is valuable)
 - Contracts priced over actuarially fair—suddenly basis risk becomes more important.
 - GIIF as solution?
 - Interlinkage as solution?
 - Liquidity constraints (but solutions)
 - Trust (Alain's observations; Gine et al. on India)
 - Understanding (probabilities; complexity)
- Is it possible that we are wrong in our fundamental approach about the behavioral principles that guide demand?
- Expected utility theory in general has been heavily questioned by behavioral experiments
- Let's look at a few elements of that critique and consider what it might mean for design of index insurance contracts and how we might test the veracity of these alternative designs

Behavioral Paradox 1

- A volunteer from the audience—thank you, Lena!
- Problem 1
- I give Lena \$10
- Lena, you must choose which of the following lotteries you want to play:
 - *Lottery A:* Heads you get \$10, Tails you get 0
 - *Lottery B:* Heads you get \$5 and Tails you get \$5
- Lena, your choice, please ...
- Problem 2
- I given Lena \$20
- Lena, you must choose which of the following lotteries you want to play:
 - Lottery A': Heads you loose \$10, Tails you loose 0
 - Lottery B': Heads you loose \$5 and Tails you loose \$5
- Lena, your choice, please

Behavioral Paradox 2

- A volunteer from the audience—thank you, Nora!
- Problem 1
- Nora, you must choose which of the following lotteries you want to play:
 - Lottery A: Certainty of receiving 100 million.
 - Lottery B: 10% chance of 500 million; 89% chance of 100 million; 1% chance of nothing.
- Nora, your choice, please ...
- Problem 2
- Nora, you must choose which of the following lotteries you want to play:
 - Lottery A': 11% chance of 100 million; 89% chance of nothing.
 - Lottery B': 10% chance of 500 million; 90% chance of nothing.
- Nora, your choice, please

Behavioral Paradox 1, Results

- Typical play in these games reveals "preference reversals," from the perspective of conventional expected utility theory:
 - In Lena's game, most people Choose B in problem 1 and A' in problem 2
 - In Nora's game, most people choose A in problem 1 and B' in problem 2
- The preference reversal observed in Lena's game signals that people respond differently to the 'same situation' depending on whether framed as a gain and or a loss:
 - Suggests that people do not perfectly integrate their assets as we typically assume in modeling behavior in the face of risk (& insurance demand)
 - A budgeting effect, or separate mental accounts
 - Loss aversion is not the same as risk aversion (in gains)

Behavioral Paradox 2, Results

- The reversal in Nora's game illustrates Allais' Paradox people are not indifferent to the removal of a common consequence (89% chance of getting \$100 million)
 - Violates 'independence' axiom of expected utility theory
 - May suggest S-shaped probability weighting scheme
 - Or, a distinctive preference for certainty [more later]

Behavioral Paradox 3, Ambiguity Aversion

- Before turning to the meaning of these behavioral findings for index insurance, let's look at one more standard behavioral finding.
- Standard Risk aversion lottery
- Ambiguity Aversion lottery
- Standard finding

Implications for Index Insurance

 Consider the following expected utility representation of wellbeing with and without an actuarially fair index insurance:

$$V^{I} = \iint u(y(\theta,\varepsilon) - K + W - \pi + \rho(\theta))\phi(\theta,\varepsilon)d\theta d\varepsilon$$

$$V^{N} = \iint u(y(\theta,\varepsilon) - K + W)\phi(\theta,\varepsilon)d\theta d\varepsilon$$

where $E(\rho(\theta)) = \pi$

- Note the following:
 - Asset integration (not matter if do or do not include for –K+W for relative rankings
 - That is gains and losses treated the same
 - Objective probabilities (no probability decision weights)
 - Some things are certain (pi), other things are not (rho), yet all evaluated with the same expected utility framework
- Finally, note that from the farmer's perspective, index insurance is ambiguous
 - Conditional on having a loss ($y(\theta, \varepsilon) < \tilde{y}$), unclear if the farmer will get a payout ($\bar{y}(\theta) < \tilde{y}$?)

Behavioral Economics-informed Alternative Approaches

- Cumulative prospect Theory (Kahneman & Tversky)
 - Losses versus gains
 - Risk-seeking over losses versus risk averse over gains
 - Low deductible preference
 - Peculiar probability weights
- Certain and uncertain utility (Andreoni & Sprenger)
 - Losses versus gains (generalize)
 - Ambiguity
 - Preference for certainty

Behavioral Economics-informed Alternative Approaches

• Cumulative prospect Theory:

Behavioral Economics-informed Alternative Approaches

• Certain and uncertain utility (Andreoni & Sprenger)

$$W(X,L) = \left\{ \begin{array}{ll} v(x_j) & \text{if } L \in \mathcal{L}_D \\ \sum_{i=1}^S p_{Ni} \times u(x_i) & \text{if } L \in \mathcal{L}_N \end{array} \right\}$$

Contract Design under Non-expected Utility

- Alternatives
 - Gains versus losses
 - Probabilistic-seeming premium
 - Deductibles
- Exploratory Mechanisms
 - Standard risk, loss and ambiguity lotteries
 - Test for alternative theories
 - Framed alternative contracts to reveal preferences
 - Losses versus gains
 - Different premium structures
 - Deductibles