
Household-Level Impacts of System of Rice Intensification (SRI) in Haiti

Travis Lybbert & Abbie Turiansky Department of Agricultural & Resource Economics University of California, Davis Robers Pierre Tescar Faculté d'Agronomie et de Médecine Vétérinaire (FAMV) Université d'Etat d'Haïti

Outline

- Introduction to SRI: Claims & controversy
- From agronomics to economics: More questions & controversy
- SRI in Haiti: The Oxfam Barr bloc project
- Evolving evaluation strategy
 - Bloc selection and matching for rollout
 - Quasi random exposure intensity
 - Impact heterogeneity & plot position
 - Power analysis
- Outcome variables and other measures
- Fine-tuning the intervention

SRI Rice: Agronomic Controversy

SYSTEM OF RICE INTENSIFICATION

Enhancing ...

- Productivity
 Water Conservation
- Livelihoods Biodiversity
- Environmental Quality

The SRI methodology, originated in Madagascar to raise rice productivity and reduce poverty, has been demonstrated to be effective in over 40 countries.

- Developed as a high yielding, low input way of cultivating rice
- Agronomic field trials in study area of Haiti show the following:

	SRI	SRT	t-Test
Yields	5.8	3.5	9.8
(MT/Ha)	(0.20)	(0.14)	
Costs	\$1505	\$1144	3.6
(\$US)	(71)	(74)	

SRI Rice: Agronomic Controversy

- Saves on inputs of seed, fertilizer and water
- Basic elements are:
 - 1. Early transplanting of seedlings 8-12 days old
 - 2. Shallow (1-2 cm) planting of seedlings
 - 3. Sparse planting of single seedlings on a 20x20 cm grid
 - 4. Intermittent irrigation
- Because it is both green and pro-poor, SRI has attracted substantial attention by NGOs and others
- However controversial amongst rice scientists who speak of the 'rice wars' and UFOs (Unsubstantiated Field Observations)

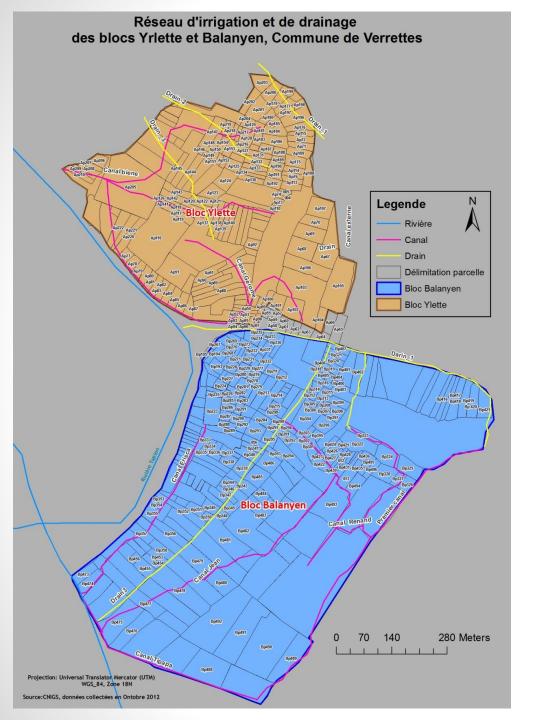
SRI Rice: Economic Questions

- Aside from its agronomic controversy, the economics of SRI remain murky
- While saves on some inputs, requires more labor:
 - Field trial data on labor
 - Poor women in Artibonite Valley saying cannot afford to cultivate more than a small amount of SRI
 - Takahashi & Barrett show that despite 64% yield increase, no net income increase for families
- In addition, SRI puts a premium on irrigation control
- Our rough calculations on input requirements and profitability from Artibonite show the following:

SRI Rice: Economic Questions

Calculation of "service credit" for 0.25 ha	۹.	SRT	٦	SRI	٦		SRA	٦
seeds (TCS10) in lbs	1 s	ack (80 ll	bs)	3 lbs		1	8 lbs	
seeds in HTG		1,000		40			225	
soil preparation (mototiller services)		2,000 2,0		000		2,000		
seedling nursery preparation		75	50		500		3	75
soil preparation for nursery		25	50					
labor: gathering and transport of seedling	gs	50	00					
line tracing ("rayonnage") required?		no		yes			yes	
transplanting		1,00	0	3,2	250		2,0	00
number of times weeding required			1	2 or 3				2
labor cost per weeding		1,00	0	2,0	000		7	00
total cost of weeding		1,00	0	5,	000		1,40)0
type of fertilizer	(chemical		compo	st	che	emica	
number of 50-kg sacks of fertilizer used			4		3			2
cost per sack		90	00	3	300		9	00
fertilizer cost		3,60	0	9	900		1,80)0
cost per 0.25 ha, in HTG		<i>9,</i> 35	0	11,6	90		7,80	00
cost per hectare, in HTG		37,40	0	46,7	'60		31,20)0
cost in USD	\$	86	0	\$ 1,0)75	\$	71	17

YIELD


2-3 MT/ha 6-7 MT/ha 4-5 MT/ha

SRI Rice: Economic Questions

Calculation of "service credit" for 0.25 ha	SRT 🎈	SRI	SRA 🍡
cost in USD	\$ 860	\$ 1,075	\$ 717
YIELD	2-3 MT/ha	6-7 MT/ha	4-5 MT/ha
Avg Yield	2.5	6.5	4.5
Gross revenue (60% 'decortage' rate x 21,500	32250	83850	58050
Profit / ha	(5,150)	37,090	26,850
Profit / ha in USD	(118.39)	852.64	617.24

Oxfam Bloc-level SRI Program

- In an effort to relax public good/coordination problems around water control, Oxfam introduced an irrigation bloc level SRI adoption program in Haiti <<see map>>
- Also provides credit subsidy & training
- Oxfam, which has supported SRI in many countries, wants to know if this bloc level SRI approach is indeed a green, propoor strategy

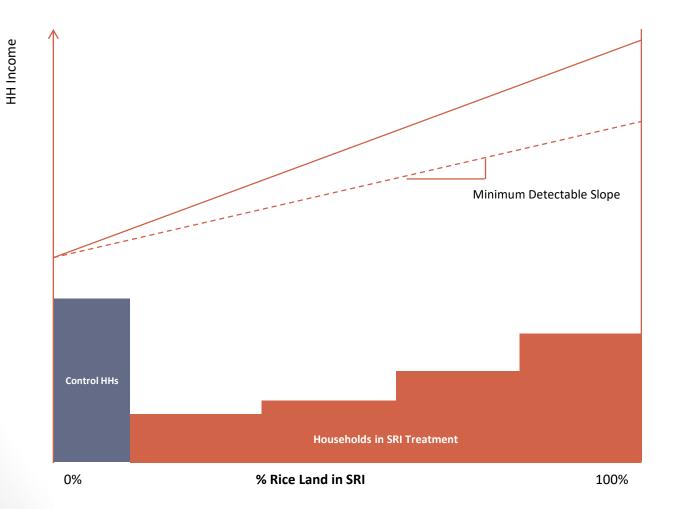
Bloc-level Program

- Logistically feasible
- Possibly higher adoption rates
- Public goods problem
 - Leverage Oxfam's investment in irrigation infrastructure
 - Coordination among farmers over maintenance

Evaluation Strategy

- Bloc-level program creates unique challenges and opportunities
- Scale up on small geographic scale and within single irrigation association to reduce variation across blocs
- Need to match treatment and control blocs carefully due to small number of blocs
- Blocs create natural variation in treatment intensity as households vary by the amount of land in treatment: doseresponse impact of SRI on key outcome variables

Treatment Bloc Selection


- Two primary criteria for selection
 - 1. Institutional context
 - 2. Physical characteristics
- Local irrigation association rated all blocs within small geographic zone on three physical features needed to make SRI viable
 - 1. Slope (average score 3.6 on a 1-10 scale)
 - 2. Canal quality (average score 5.7)
 - 3. Drain quality (average score 4.4)
- We also looked for matches on presence and participation in two farmer associations

Treatment Bloc Selection (Top Scoring Blocs)

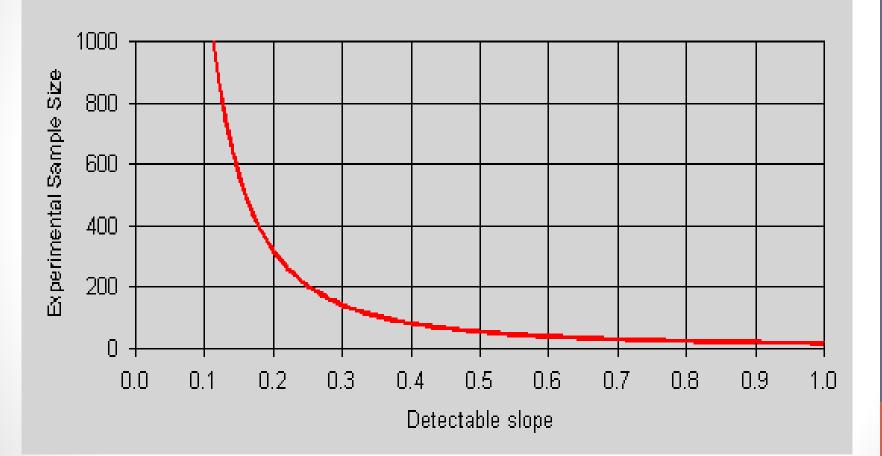
Bloc	Pair	Canal Quality	Drain Quality	Slope
<mark>Castera *</mark>	В	8	7	7
Chandel I		6	5	7
Eroi	B?	7	5	4
<mark>Haut Zin *</mark>	А	6	5	4
Mme Mede	B?	6	5	5
Potri	А	8	7	7
Sans Limite Michel		6	5	6

*Indicates substantial membership in MAF, the secondary farmer association; All blocs have similar active participation rates in irrigation association (~10%)

Variable Intensity of Treatment

Variable Intensity of Treatment

Percent of land in Balanyen, households in Barr project


Impact Heterogeneity

- Plot position impacts adoption decisions and ultimate outcomes due to water management issues
- Two-part decision
 - 1. Whether to adopt SRI
 - 2. How much to contribute to canal and drain maintenance
- Adoption decision, success of SRI, and contribution to public good vary depending on plot position

Power Analysis

- Dose response approach tests marginal effect of increasing treatment level
 - Power calculations based on minimum detectable slope
- Need to assume exogenous variation in treatment level: proportion of land in SRI blocs uncorrelated with anything important
 - Initial data from Barr project support this, once we control for total number of parcels
- Use FAMV trial data for power calculations
- What would constitute success for this program:
 - Increased yields
 - Increased income

Power Analysis

Outcome variables and other measures

- Household Impacts
 - Yield
 - Profit
 - Household income
- Heterogeneous Impacts
 - Geography and water control affect adoption decisions and outcomes
- Adoption and public goods contributions

Fine-tuning the Intervention

- Money-back guarantee credit arrangement
 - Credit arrangement with repayment waived if average SRI yields are not sufficiently high compared with yields from traditional methods
 - Replaces last year's 50% subsidy
 - Requires precise land measurement and yield calculations
- Training changes, including farmer field visits
 - Proof of concept: reduces need for subsidy

Summary & Next Steps

- Learning from the Barr project
 - Lessons for scale-up
 - Initial evaluation of yield and profit impacts
- Continue to investigate questions about exogeneity of treatment level
- Public goods coordination questions
- Plot mapping and baseline survey