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Abstract

Rainfall index insurance is a theoretically attractive financial product that has achieved only
limited adoption. This paper seeks to understand the structure of demand for rainfall index
insurance in India. We develop two approaches to estimating households’ valuation of rainfall
insurance and evaluate them against an experiment in which fixed prices are randomly assigned.
The first approach uses a simple structural model of index insurance demand that includes basis
risk–the possibility that policy-holders may suffer a negative shock yet receive little or no payout.
We use survey data from members of an insurance pilot in Gujarat, India to fit the model and
estimate the willingness to pay (WTP) for rainfall insurance coverage. Relative to the choices we
observe at randomly assigned fixed prices, the structural model significantly overestimates demand.
Our second approach uses a Becker-Degroot-Marschak (BDM) methodology to empirically elicit
WTP from potential insurance customers at the time of marketing. We find that BDM does a
better job of predicting fixed price purchasing behavior, but the distribution of stated willingness
to pay has large mass points at focal points. Finally, we directly compare the two approaches and
find the theoretical model has weak predictive power for WTP as elicited by BDM. We explore
which household characteristics are correlated with WTP and determine that recent experiences
with rainfall and insurance are important factors not captured in our static model, suggesting that
learning dynamics may be a promising direction for future analyses.

1 Introduction

Rainfall index insurance is a microinsurance product designed to help farmers cope with the risk of
uncertain rainfall. Its payouts are based not on individual outcomes of its customers, but instead on
rainfall measured at a nearby “reference” weather station. This contract structure eliminates moral
hazard, adverse selection, and costly claims adjustment, facilitating sale to small-scale farmers. Despite
vast theoretical promise and extensive policy development, demand for rainfall index insurance has
been low, especially when offered at market rates. Several years of field work with the NGO SEWA
in Gujarat, along with a parallel study in Andhra Pradesh, have shown take-up of around 16% for
market-priced insurance in India, despite intensive door-to-door marketing by trusted representatives
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(Cole et al., 2010; Giné et al., 2008). Giné et al. (2010) provide greater detail on the Indian rainfall
insurance market.

This paper seeks to reconcile empirical findings of limited demand with an individually-calibrated
structural model. Specifically, we develop a static model of index insurance demand that predicts
willingness-to-pay (WTP) for a fixed amount of insurance coverage, given an individual’s risk aversion
and distance from the reference weather station. Our model contains a key insight highlighted by
Clarke (2011), which is that the chance that the farmer could experience a shock but not receive a
payout may reduce rainfall insurance demand by the most risk averse. We then perform three sets of
tests.

First, we examine how well the model predicts observed insurance purchases at experimentally-
manipulated fixed prices. Customers’ decisions when presented with random fixed price offers provide
useful benchmarks because they most closely reflect the real-world sales environment. This test com-
pares the percentage of the population that the model implies would have bought at a given fixed price
to the percentage of people offered this price that actually purchased. If these percentages are the
same, it indicates that the model is performing well at predicting WTP at the given price. In fact, we
find that at each fixed price the model predicts a greater percentage of purchasers than we observe,
indicating that the model is overestimating WTP.

Only two fixed prices were offered, limiting the resolution available for the first test. Consequently,
second, we introduce and evaluate a methodology for obtaining higher-resolution empirical measures
of WTP: a Becker-DeGroot-Marschak incentive-compatible mechanism (BDM). We implemented the
BDM mechanism with 2,165 farmers for the opportunity to purchase real insurance policies. Using the
same procedure we used to evaluate the model, we analyze the decisions made by people who received
fixed prices to test the effectiveness of BDM in estimating WTP. (Subjects were randomly assigned
BDM or an opportunity to buy at a fixed price.) We find that participants in the BDM exercise are
very likely to express willingness to pay equal to a focal point (Rs. 50 or 100), making the comparison
with fixed discounts difficult to interpret. However, when the fixed price corresponds to a focal point
of the distribution, the WTP distribution elicited via BDM is consistent with purchasing behavior at
fixed prices.

In our third test, we directly compare WTP predicted by the structural model to that measured
using BDM. At the individual level we regress the WTP estimated using BDM (BDM bids) on the
WTP predicted by the model (calculated WTP). A positive coefficient on calculated WTP would
suggest that our model has predictive power in determining the BDM bids. In our full sample we find
a positive correlation, showing that a one rupee increase in the calculated WTP is associated with an
increase of Rs .27 in BDM bids, but this correlation is only significant at the 12% level. This indicates
that the model has relatively weak power in predicting the BDM bids.

The remainder of the paper analyzes the strengths and limitations of the model and the BDM
procedure in order to resolve the discrepancy between their implied WTP’s. In response to recent
papers exploring the risk aversion and insurance demand (Cole et al., 2010; Clarke, 2011; Bryan,
2010), we test how the relationship between risk aversion and insurance demand has evolved over time
throughout our study. We find that while risk-averse people were less likely to purchase insurance at
the beginning of the study (in 2006), by 2010 risk aversion was positively correlated with insurance
demand, which corresponds with predictions of our model.

Finally, we examine other household characteristics that may be correlated with the BDM bid,
hoping to gain insight into what other factors may influence WTP. We find that recent experiences
with rainfall and insurance have significant correlations, suggesting that adding dynamic components
of demand to our neoclassical model may be important.
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This paper also makes a number of methodological contributions to the implementation of BDM in
the field. First, it highlights the potential for focal points around round numbers in the distribution of
WTP estimated by BDM. This suggests that researchers looking to test the effectiveness of BDM should
make sure that their fixed price comparisons correspond to focal points of the BDM bid distribution.
Next, we show that the outcomes of a “practice” BDM game, which teaches subjects how the game
works, can affect their decisions in the ‘real’ game for insurance. As experiences in the practice BDM
game (for a napkin) had strong effects on BDM bid for insurance, this suggests that researchers should
use caution when teaching subjects about BDM.

This paper draws on a line of theoretical papers that attempt to explain low insurance takeup
in the field. deNicola (2011) calibrates a dynamic infinite-horizon model, showing that basis risk,
premium loading, and uninsurable background risk can lead to low insurance adoption. Cole et al.
(2010) calibrate a simple neoclassical model and predict significant insurance demand for people with
high risk aversion. On the other hand, Bryan (2010) uses a model of ambiguity aversion to show that
people who are ambiguity averse will have demand for insurance decreasing in risk aversion. Clarke
(2011) develops a model highlighting basis risk, showing that the possibility of not receiving a payout
in the bad state of the world can reduce demand among the most risk averse individuals. Our model
is closest in spirit to that of Clarke (2011).

As far as we know, ours is the first study to use BDM to study WTP for rainfall insurance.
Perhaps the most closely related paper is Cole et al. (2010), which estimates demand elasticity for
rainfall insurance using discount coupons, finding an elasticity between -.66 and -.88. The demand
curve we estimate using BDM gives shows how the elasticity varies over a wider range of possible
prices.

There have been relatively few field tests of the effectiveness of BDM as a methodology to assess
WTP. While it is easy to show that the true statement of WTP is a dominant strategy for models of
expected utility maximization (Becker et al., 1964), others have shown that BDM can give biased results
if the expected utility framework does not hold (Horowitz, 2006a; Karni and Safra, 1987). Horowitz
(2006b) provides a good overview of previous tests of BDM, along with some reasons for skepticism.
Berry et al. (2011) test the effectiveness of BDM in the field by comparing WTP from BDM to
demand elicited by fixed price offers for a water filter in Ghana, and find that BDM systematically
underestimates WTP.

This paper will proceed as follows. In Section 2 we give an overview of the insurance products and
data used in the experiment. In Section 3 we develop our model of insurance demand, and Section 4
presents benchmark tests of its predictions against insurance decisions at fixed prices. In Section 5 we
discuss the implementation of BDM in the field, and test the predictions of BDM against insurance
decisions at fixed prices. In Section 6 we directly compare WTP estimates from our model to those of
BDM. Section 7 assesses reasons for the discrepancies between the model and the empirical measures
of WTP. Section 8 concludes, and offers policy prescriptions based on the results.

2 Product and Data Description

2.1 Policy Explanation

Our local partner in this project is SEWA, an NGO based in Ahmedabad, India, that describes itself
as “an organization of poor, self-employed women.” Responding to concerns about rainfall risk from
its rural members, SEWA piloted a rainfall insurance product in Patan in 2005, and began a broader
offering of rainfall insurance to households in three districts (Ahmedabad, Anand, and Patan) during
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Table 1: Policy for Anand Tehsil in Anand District (Payouts doubled to reflect NABARD subsidy)

State GUJ Distrcit: Anand Tehsil: Anand

Crop: Generic Crop Reference Weather Station: Anand

1. DEFICIT RAINFALL

PERIOD 16-Jun to 15-Jul 16-Jul to 20-Aug 21-Aug to 30-Sep
TRIGGER I  (<)                  80 mm 160 mm 60 mm
TRIGGER II (<)                30 mm 75 mm 20 mm
EXIT 0 0 0
RATE I  (Rs./ mm) 3 1.5 2.5
RATE II (Rs./ mm) 24.16 9.96 20.00
Max. Payout (Rs.) 875.00 875.00 500

TOTAL PAYOUT (Rs.) 2250

2. PERIOD 1-Sep to 20-Sep 21-Sep to 10-Oct
DAILY RAINFALL TRIGGER (>) 80 mm 60 mm
EXIT (mm) 160 mm 120 mm
Payout (Rs. / mm) 3.02 8.34
Max. Payout 250 500

TOTAL PAYOUT (Rs.) 750

TOTAL SUM INSURED (Rs.) 3000
PREMIUM with S Tax (Rs.) 150
PREMIUM % 10.00%

PHASE - I PHASE - II

EXCESS RAINFALL    

(Multiple events)

WEATHER BASED CROP INSURANCE SCHEME (KHARIF 2010)
TERM SHEET

Unit: PER ACRE

PHASE - I PHASE - II PHASE - III

1 A.  RAINFALL VOLUME

the summer (kharif) growing season in 2006.
This study uses data from 2010, when SEWA offered a five-phase rainfall insurance policy un-

derwritten by the Agricultural Insurance Company of India (AICI) to its members. The first three
phases of the policy provide coverage against deficit rainfall, while the final two phases provide cover-
age against excess rainfall as heavy rainfall or storms can damage crops near harvest time. The policy
terms as provided in AICI’s termsheet are included here as Table 1.

SEWA offered policies linked to 14 different rainfall stations. The policies were all priced the same
(Rs 150), but gave slightly different terms due to different historical rainfall. They all followed the
same general structure as the example given above. The deficit phases of coverage offer piecewise-
linear payouts based on the cumulative amount of rainfall within the specified timeframe. If this
cumulative amount is below Trigger I (II), the policy pays out the difference between actual rainfall
and Trigger I (II) times Rate I (II). (Note that when rainfall is below Trigger II, the customer is also
paid [TriggerI-TriggerII]*Rate I.)

The two excess phases pay out if rainfall on any single day within the coverage period exceeds the
trigger threshold. Figure 1 shows the payout structure for the first phase of the insurance policy for
Anand Tehsil.

While they vary somewhat based on the weather station, the policies offer coverage that is roughly
actuarially fair, meaning the expected value of insurance payouts equals the premium paid. This
favorable pricing was due to a subsidy from the government of India’s National Bank for Agriculture
and Rural Development (NABARD). NABARD offered to match premiums paid by farmers, which
effectively doubled payouts from the original policies offered by AICI. When selling the policies, SEWA
chose to market the subsidy as a “Buy One Get One Free” promotion to its members. SEWA explained
that anyone who purchased a policy (either at full price or as a result of the BDM game) would instead
be awarded two policies, effectively doubling coverage.

Insurance policies are written for a certain policy holder only, and are not transferrable. While an
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Figure 1: Payout Scheme for Phase 1, Anand Tehsil, Anand District
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informal secondary market for the insurance policies could technically exist, we have never witnessed
any evidence of this.

2.2 Data

The data in this study comes from household surveys conducted with SEWA members from 2006-2010,
and also from data collected during insurance marketing efforts in 2010. In 2010, SEWA marketed
insurance to around 3,351 households in 60 villages. We can divide this sample into two groups: the
sample of people who received household surveys, and non-surveyed households.

Since 2006, we have conducted annual household surveys with 750 of these households. One third
of the surveyed households were selected randomly from SEWA’s membership rolls, while the other
two thirds were identified by SEWA as people who may be interested in rainfall insurance. In 2009,
we added an additional 8 villages to the study, surveying and visiting 50 households per village (all
of whom were suggested by SEWA.) Survey data is used to calculate risk aversion parameters for
participants, calibrate constants in the theoretical model, and to correlate BDM bids with household
characteristics. All surveyed households were given the opportunity to play the BDM game.

Most household data used in this paper is taken from the survey conducted in early 2010. One
exception is the measure of risk aversion, as questions pertaining to these subjects were only asked
in the first year customers were surveyed (which is either 2006 or 2009). Table 2 presents summary
statistics for our surveyed population.

The non-surveyed households were additional households suggested by SEWA that would be good
candidates for rainfall insurance. As the surveyed and non-surveyed populations were selected differ-
ently and also have received different marketing efforts in the past, the two populations potentially
have different underlying insurance demand. Both surveyed and non-surveyed households were used
to populate a marketing list, which directed SEWA’s marketing efforts.
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Table 2: Summary StatisticsTable 2

BDM bid / Total price 0.593 Irrigation spending (Rs '0000)† 0.039
(0.24) (0.142)

Bought insurance 0.62 Uses HYV seeds 0.335
(0.486) (0.472)

Total Monthly expenditure (Rs '0000)† 6.101 Experienced Drought in Previous Yr 0.268
(4.588) (0.443)

Experience with SEWA insurance 0.192 Food adequacy 0.058
(0.394) (0.234)

Experience with Gov't crop insurance 0.069 Rainfall last year 3.640
(0.254) (1.43)

Outstanding credit (Rs '0000)† 3.48 Basis risk 10.865
(5.006) (5.073)

Main income own agriculture 0.165 Financial literacy 0.617
(0.371) (0.233)

Main income agricultural labor 0.203 Risk Aversion 1.331
(0.402) (2.362)

Input spending (Rs '0000)† 0.212 Discount factor 0.772
(0.455) (0.165)

Standard Deviations in Parentheses † Windsorized at 1% upper tail

Page 1

2.3 Insurance Marketing Strategy

Insurance policies were marketed to 60 villages from May-June 2010 by SEWA. The marketing began
with a village meeting to which all SEWA members were invited, which explained the concept of
rainfall insurance and the policies that would be offered. In the meetings attendees were given the
opportunity to discuss the policies and ask questions of the SEWA representatives.

Following completion of the village meetings, the SEWA marketing team returned to each village
to conduct household-level marketing visits. They focused on reaching people on the pre-specified
marketing list. Each person on the marketing list received a household visit by a member of SEWA’s
marketing team, during which they received an explanation of the insurance policy, viewed a video
about rainfall insurance on a handheld player, and received additional marketing flyers with randomly
assigned marketing messages.

In addition, each household was given a preprinted scratch card that enabled the client to either
receive fixed policy discounts or play the BDM game. The participant’s name was printed on the
scratch card, and only they could use it. Participants first scratched off the top panel of the scratch
card, which revealed whether they received an offer of a fixed discount or an offer to play the BDM
game.

If the household was selected to play the BDM game, they were then asked to state the maximum
amount of money they would be willing to pay for insurance (their bid). They then scratched off
another panel on the card which revealed their random offer price. If the offer price was below their
bid they purchased the policy for the offer price. If the offer price was higher than their bid, there was
no sale. Further explanation of the BDM procedure is given in Section 5.

Surveyed and non-surveyed households were treated with discount arms in different proportions. To
maximize power for tests involving household characteristics, only BDM games (for 1 and 4 policies)
were assigned to surveyed households. To maximize power for evaluating the BDM methodology,
either BDM games (for 1 and 4 policies) or fixed-price discounts were randomly assigned to 1,035
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Table 3: Discounts Offered
Table 3

Surveyed Nonsurveyed

All Discounts

Visited 1158 2193

Played Scratch Card 865 1300

BDM Game for 4 Policies

Number Played 410 295

Number Won 326 190

Number Bought 294 167

Average Bid (Rs.) 297.6 280

(137.1) (139.8)

BDM Game for 1 Policy

Number Played 448 345

Number Won 420 310

Number Bought 387 286

Average Bid (Rs.) 102.8 105.2

(31.0) (38.1)

Fixed Price Rs 100

Number Scratched 0 327

Number Bought 0 232

Fixed Price Rs 130

Number Scratched 0 314

Number Bought 0 182

Standard Deviations in Parentheses

Page 1

non-surveyed households identified by SEWA as potentially interested in rainfall insurance. The fixed
discounts resulted in final prices for a single insurance policy of Rs 130 or Rs 100. Note that we use
purchasing data from people given fixed discounts to validate estimates of WTP elicited via BDM and
our model. An image of the scratch card used to conduct the randomization is given in Appendix
Figure A1.4.

Of the 3,351 people visited in 2010, 2,165 filled out the scratch cards. Table 3 outlines the various
discounts and games offered.

3 Structural Approach

3.1 Models of insurance Demand

In this section, we construct and calibrate a model of demand for rainfall insurance that captures the
key features of the farmer’s problem.

Classic theories of insurance demand (Schlesinger, 2000; Borch, 1990) generally focus on traditional
indemnity insurance, in which insurance payouts are a function of financial loss. These models predict
full insurance coverage for risk-averse individuals when insurance is priced at actuarially fair rates, and
at least some coverage when insurance is more expensive. These models do not match the observed
low take-up rates of index insurance.
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Standard models of indemnity insurance omit a key feature of index insurance: basis risk. Basis
risk is the possibility that the insurance may not pay out even though the customer has experienced
a loss (or if the insurance pays out even though no loss occurs.) This happens if the weather on the
farmer’s land differs from that at the reference weather station or if a farmer experiences crop failure
for any other reason (e.g., pest). Basis risk is an important limitation of index insurance as compared
to traditional indemnity insurance, and may be an important aspect of a model of index insurance
demand.

In the following model we allow for basis risk by assuming that the rainfall which produces crop
input is not the same as the rainfall used to calculate insurance payouts; they are instead related by a
bivariate lognormal distribution, where the correlation between the two variables determines the basis
risk.

We allow each village to have its own measure of basis risk, which increases with the distance to
the reference weather station. We also allow the coefficient of partial risk aversion to vary for each
individual, as we have estimates of risk aversion from experimental lotteries conducted during the
survey. These two factors allow us to generate individual-level estimates of WTP for insurance.

3.2 Basic Model Structure

We construct a simple model of insurance demand to determine how much an individual would be
willing to pay for a fixed amount of insurance coverage. An individual has fixed income Y, but is
also subject to a random income shock S. The individual can purchase an insurance policy at price P
which gives a payout M as a function of the shock. The premium P ∗ that satisfies Equation 1 sets the
expected utility from purchasing insurance equal to the expected utility from not purchasing insurance,
representing the maximum WTP.

E[u(Y − P ∗ − S +M)] = E[u(Y − S)] (1)

Timing is as follows:

1. Customer makes insurance purchase decision.

2. Income shock S and payout M are realized.

3. Final wealth is consumed.

In the next section we calibrate this model by developing a structure for the shocks, payouts, and
utility function.

3.3 Calibration

The main challenge in adapting the simple model above to our situation is to develop a structure for
both income shocks and insurance payouts. We use historical rainfall, crop models, and the actual
insurance policies used in Gujarat to develop such a framework.

SEWA offered insurance contracts for 14 different rainfall stations in 2010, but we have varying
amounts of historical data for each station. We have a particularly long data series (44 years) from
the weather station in Anand city due to data collection by the Anand Agricultural University. We
therefore calibrate the model using Anand’s historic rainfall data and its corresponding insurance
policy.
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We estimate crop losses using an adaptation of the Food and Agriculture Organization’s crop water
satisfaction model (Cole and Tufano, 2007; Bentvelsen and Branscheid, 1986). In this model, crop losses
are proportional to the percentage evapotranspiration1 deficit from the maximum evapotranspiration
by the crop-specific yield response factor Ky. We proxy for evapotranspiration with rainfall, and define
the shock S as follows:

S = 1(R < Rmax)Ky(1 − R

Rmax
)Yn (2)

Where R is rainfall and Rmax corresponds to the 90th percentile of the rainfall distribution, which
we assume is the rainfall threshold below which crop losses begin to occur.2 We assume that the shock
is proportional to Yn, which represents the maximum level of income that can be lost due to a shock.
We set Yn at 10,500, which is equal to the average yearly difference between income in a good rainfall
year versus a bad rainfall year as self-reported by our farmers.

We assume that the relevant R used to calculate income shock due to drought is the cumulative
rainfall over the period of time when our insurance policies offer drought coverage. Following Cole
and Tufano (2007), we assume that this rainfall follows a lognormal distribution. The parameters of
both variables are set to fit the historical rainfall distribution in Anand district over the beginning
of the monsoon (when drought coverage was offered), giving a location parameter of 6.57 and a scale
parameter of .41. A Kolmogorov-Smirnov test cannot reject the equality of distribution between actual
rainfall and our fitted lognormal distribution. Figure 2 plots the cumulative distribution function for
both historical rainfall and our lognormal approximation.

The main crops grown by farmers in our sample are millet and sorghum. While we do not have
yield response data for millet, the FAO estimates the Ky coefficient of crop loss for sorghum to be
around .9 over the entire growing season (Bentvelsen and Branscheid, 1986). We therefore use a value
of .9 for Ky.

The rainfall insurance policies sold in Gujarat in 2010 were quite complicated, consisting of three
phases of drought coverage and two phases of coverage against single days of particularly heavy rains.
We estimate insurance payouts using a simpler scheme with one phase of drought coverage covering the
time period of drought coverage on the actual policies. This simplification costs us the opportunity to
correctly analyze situations where overall rainfall in a season is normal, but the distribution is heavily
skewed, affecting crops and also triggering insurance payouts. However, we feel the gain in simplicity
from a one-phase policy is worth this sacrifice.

While the actual insurance policies sold in Gujarat in 2010 varied based on location, they all had
roughly the same structure. For drought coverage, linear payouts are based on the difference between
cumulative rainfall over a phase and two defined “triggers”. When rainfall falls below the first trigger,
the policy pays out a small payment for each millimeter of rainfall below the trigger. When rainfall
falls below the second trigger, recipients receive payouts per millimeter that are much higher than
deficits below the first trigger. In Anand Tehsil, rainfall has historically fallen below the first trigger
41% of the time and hit the second trigger 15% of the time. We use these thresholds of the estimated
rainfall distribution to create the payout structure, with payment per millimeter below the second
trigger being seven times the payment per millimeter below the first trigger. As the policies in 2010

1Evapotranspiration is the sum of water evaporating from a surface (evaporation) and water vapor being released by
a plant (transpiration). Transpiration is directly related to the amount of water absorbed by a plant, but in practice, it
is generally difficult to measure the two effects separately. Therefore evapotranspiration is used as a proxy to measure
water intake by the plant. When crops receive all their water from rainfall (as is the case with most of our sample
population), evapotranspiration will be closely related to rainfall.

2Our results are not sensitive to this assumption.
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Figure 2: Actual versus Fitted Rainfall over first three phases of the Monsoon. Anand District 1965-
2003, fitted to lognormal distribution.

!"#

!"$

%

!"#$%"&&'()*'%+,-$"$.')#/0,#10

!

!"&

!"'

! (!! %!!! %(!! &!!!

!"#$%"&&'2334

)*+,-./0-123-..

41++56/0-123-..

were roughly actuarially fair, we set the payout amounts such that in expectation the payout equals
the premium of Rs 150.3 This corresponds to a payout of Rs 1.11 for each millimeter below the first
threshold and Rs 7.77 for each millimeter below the second threshold.

Insurance payouts are based on rainfall at a local rainfall station, which may be different from
rainfall R that farmers experience in their fields. We denote the rainfall used to calculate the insurance
payout as Rs, and to provide for basis risk we draw R and Rs from a bivariate lognormal distribution.
It is worth noting that this choice deviates from the structure of basis risk used by Cole et al. (2010)
and Clarke (2011). Cole et al. (2010) assume that the two shocks (the equivalent of R and Rs) are
different due to an additive, independent, mean-zero normal error term. Importantly, this structure
creates very few situations where there is a bad shock yet no payout, minimizing the importance of
basis risk. The model in Clarke (2011) has a constant probability that the insurance will not give a
payout even when there has been an income shock. This creates many situations where there is a bad
shock yet there is no payout. The difference in this structure determines why Cole et al. find insurance
demand increasing with risk aversion, while Clarke finds demand to be either uniformly decreasing or
increasing then decreasing in risk aversion. Our bivariate normal structure presents a strategy that is
somewhat in between in terms of the number of times where it creates a bad shock but low insurance
payout. But overall, it creates a structure of basis risk closer in spirit to that of Clarke (2011).

Empirically, we have examined the relationship between correlations of daily rainfall realizations at
the 15 GSDMA weather stations in our study area, and the distance between those weather stations.
The correlations fall with distance, as expected, and the linear fit between the correlations and distance
has an R-squared of 0.62. In our model, we adopt this linear structure of rainfall correlation, and assign
a level of correlation to each village based on its distance from its reference weather station. For the
typical distance of 10 km between a study village and its weather station, the predicted correlation in

3As is standard in the insurance literature, this definition of “actuarially fair” does not take into account time
preference.

10



Table 4: Model Calibration

Risk Exposure

Fixed Income (Y) 41800

Maximium Loss (Yn) 10500

Crop Factor (Ky) 0.9

Rainfall Distribution (Lognormal)

Location Parameter 6.568

Scale Parameter 0.405

Shock Distribution

Average shock 5224

Stdev of shock 1694

Policy Characteristics

Probability Payout > 0 41%

Payout Rs/mm after First Trigger 1.1

Probability of Reaching Second Trigger 15%

Payout Rs/mm after Second Trigger 7.7

Average payout 150

Basis Risk

Correlation between money shock and 

payout shock
Average 0.76

Standard Deviation 0.11

daily rainfall is 0.65.
We assume that people have CRRA utility with coefficient of relative risk aversion φ. Utility as a

function of consumption c is given as:

U(c) =
c1−φ

1 − φ
(3)

Survey enumerators played Binswanger (1981) lotteries with subjects for real money, which allows
us to estimate φ for each respondent. Given that the amount of money in the games is relatively
low compared to subjects’ total wealth, a simple calculation of the CRRA parameter would give
unreasonably high values (the no-risk value of the lottery is Rs 25, or around $.50.) Therefore, we
follow Binswanger (1981) and estimate the partial risk coefficient, and use this as an estimate of the
coefficient of relative risk aversion. This assumption gives a range of values consistent with empirical
estimates of risk aversion (Halek and Eisenhauer [2001] have a good summary.) More detail about
estimation of these risk coefficients is given in Appendix Table A1.1.

Certain income Y is set equal to the average level of yearly nonfarm income according to our survey,
which is Rs. 41800. Table 4 outlines the calibration of various constants in the model.

To calculate the willingness to pay for insurance, we numerically solve Equation 1 for P ∗ for each
person who played the BDM game. In the next section we present the results of this model.
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4 Test of Model Predictions against Fixed Prices

4.1 Benchmark Tests of the Structural Model

In this section we compare predictions of the model against purchasing decisions made by people who
faced fixed prices for a single policy, which we consider a reasonably reliable indicator of true WTP.4

This can only be thought of as an illustrative test, however, since the population which received
fixed-price offers does not overlap with the population of those for whom we have survey data. Most
importantly, the households for which we have survey data are more likely to have received insurance
marketing visits over the past years, which could influence their WTP. However, we believe this is still
a useful exercise, as the sampling frame for the surveyed households and the households receiving the
marketing price are roughly similar.

Since everyone for whom we have survey information was offered the BDM game, we cannot use
the model to calibrate demand for those offered fixed prices. But we can still use aggregate statistics
to provide a rough test of how well the model mirrors true purchasing decisions. We compare the
percentage of people who purchased insurance at a fixed price to the percentage of people whom the
model predicts would have a WTP above the fixed price. If these two percentages are equal, it is an
indication that the model is accurately predicting WTP, at least around that fixed price.

When we visited households in the field, we delivered the opportunity to purchase insurance for
reduced prices (or play the BDM game) via a scratch card. Some households (around 1/3) refused to
scratch off their card, generally due to complete lack of interest in insurance. A reasonable assumption
is that these households’ true WTP was below any of our fixed prices and therefore they would not
have bought even if they had scratched off the card. We report results for both the sample of just
people who scratched off a card and also the full visited sample, assuming that these people would not
have purchased at either of our fixed prices.

The comparison between model predictions and fixed price purchasing is presented graphically
in Figure 3. The solid line in the graph is the demand curve predicted by the model, showing the
percentage of people we expect to purchase at each price.5 The columns represent the actual proportion
of purchasers at fixed prices of Rs 100 and Rs 130. The dark columns include the whole sample, while
the light columns restrict the analysis to only people who filled out the cards. The graph clearly shows
that the model overestimates the amount of purchasers at all fixed prices.

In Table 5 we present numerically the comparisons between the model predictions and purchasing
at fixed prices. In Column 1 our sample of fixed price purchasers is everyone who scratched off their
scratch card to reveal a fixed price (which would either be Rs 100 or Rs 130). We see that the model
predicts near-universal takeup- 100% at a price of Rs 100 and 98.48% at a price of Rs 130, while actual
takeup was 71% and 58% respectively. In Column 2 we include all people who were visited, even if
they refused to fill out a scratch card. Here we see that the model still predicts near-universal takeup,
while the actual takeup is 43% and 33%. These results verify the fact that our model is overestimating
WTP. While the surveyed and fixed-price populations are different, it is unlikely these differences are
driving a wide gap in WTP between the model and observed behavior. We therefore conclude that
the model severely overestimates WTP.

4While we can use our model to predict WTP for any amount of insurance, we only have fixed price data for purchases
of single policies, so we use predicted WTP for one policy for the comparison.

5Note that the demand curve is generated for the entire surveyed population that was visited to market insurance. We
could generate a second demand curve just for people who agreed to play the scratch card to provide clearer comparison
to the “Played Card” results for fixed prices, but this demand curve is virtually indistinguishable from that of the full
sample.
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Figure 3: Comparison of Model Predictions to Purchasing at Fixed Prices
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4.2 Structural Model Sensitivity Tests

In this section, we test the sensitivity of the model to shed light on which parameters may be responsible
for the inaccurately high estimates of insurance demand. Charts and figures related to these tests can
be found in Appendix Section A.2.

We consider three key factors that could affect model predictions: expectations about payouts, risk
exposure, and basis risk.

We used all available data, 44 years, to characterize the rainfall distribution. However, much of
the policy value derives from extreme events, which are by definition rare. It is quite possible that
people had varying beliefs about the probability of the payout. A farmer who believes the expected
payout to be significantly lower will have a lower WTP for the product. Given our 44 years of data, we
can put bounds on our estimate of the expected value of the insurance, and see how we would expect
WTP to change for different beliefs withing these boundaries. If a farmer believes the insurance is
not actuarially fair, and instead has a loading factor in the range of 21-42% (which correspond to one
and two standards deviations below our estimate of expected payouts), predicted WTP lines up more
closely with fixed price behavior.

A second factor affecting demand is the degree of risk exposure. We model this as the ratio of
wealth susceptible to loss due to a rainfall shock, set to roughly .2, based on self-reported loss exposure
by farmers. Since this may be a noisy measure, we consider alternative ratios, from 1 (which means
a farmer risks losing all wealth) to .1. Ratios below .2 do not have much effect on insurance demand.
Increasing this ratio does increase demand, but at high levels of risk aversion the prospect of a total
loss not covered by insurance can decrease insurance demand (this is one of the central conclusions of
Clarke [2011]).

Finally, the amount of basis risk present can affect insurance demand. In the Appendix we present
results from the model with a range of correlation between shocks and payouts, including the endpoints
of 0 and 1. While lower basis risk does lead to higher insurance demand, this effect plays out mostly
for those with the highest risk aversion.

The factor that seems to have the most potential to square our predicted WTP with observed
behavior is the belief about average payouts; possibly the customers did not believe that this insurance
was in fact actuarially fair. We will discuss other ways to possibly improve the model’s predictions in
Section 7.

5 BDM and Fixed Discounts in the Field

5.1 Explanation of BDM Implementation

As mentioned before, the opportunity to play the BDM game was determined using a scratch card,
which was given to all households visited for insurance marketing. If the participant received the
chance to play the BDM game, the SEWA team then explained how the game worked. The steps of
the BDM game (using the game for 1 policy as an example) are as follows:

1. Participant states the maximum amount they are willing to pay for the insurance policy. This
“bid” is recorded by the facilitator.

2. Participant scratches off the random “offer” price from the scratch card.

3. If the offer is less than the bid, then the participant purchases the insurance at the offer price. If
the offer is greater than the bid, the participant cannot purchase policies during that marketing
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visit, though she or he is free to purchase the insurance at full price through an agent or SEWA
sales team member at another time.

The participant first practiced by playing the BDM for a SEWA napkin, which had a market value of
Rs 10. The napkin game was resolved on the spot to show exactly how the game worked. Then they
played for insurance. After stating their bid, participants were reminded that bid above the offer price
was an agreement to purchase insurance, and that if the bid was below the offer price there would be
no sale. In order to make sure that the BDM bid did not capture short-term liquidity fluctuations,
participants were told that if they didn’t have the money to purchase insurance on the same day, a
SEWA representative would return in two weeks to complete the sale if they won the game. Before
scratching off the offer, participants had a chance to adjust their bid, but once the offer was scratched
off they could no longer change their bids.

The distribution of BDM offers was skewed towards low prices, as we wanted many people to win
the game and end up with rainfall insurance.6 The range of the offers was between 0 and 150 (the
market price for insurance), and the probability density function of the offer prices was: Density =
2 − 2 ∗ (OfferPricePremium ). We told participants the range of the offer prices, but not its distribution.7

5.2 Theoretical Concerns about BDM

As mentioned earlier, various authors have put forth concerns about the validity of BDM, especially if
participants have preferences that cannot be expressed by expected utility (Horowitz, 2006a; Karni and
Safra, 1987). Karni and Safra emphasize that BDM can give incorrect valuations for lotteries, which
would include insurance contracts. While different classes of preferences cause the WTP estimated by
BDM to be either upward or downward biased, it is instructive to think how a specific deviation from
expected utility could affect BDM bids.

We take Karni and Safra’s example of using probability weights as in prospect theory, and consider
how this class of preferences could affect a BDM bid for index insurance. If participants play BDM
for a lottery with a particularly important low probability event (we will call it a “catastrophe”), the
probability of this event will be lower when playing the BDM game because there is a chance that BDM
will result in the lottery not being offered at all. If a participant overweighs low probability events,
playing BDM for this lottery makes the subjective probability of the catastrophe higher relative to
its actual probability. One catastrophic event that may weigh on a participant’s mind in the case
of rainfall index insurance is basis risk, or more specifically that there would be a bad rainfall shock
yet would receive a small or nonexistent payout. With overweighting of small probabilities, the BDM
game would magnify the effect of this negative event on decision making, tending to cause BDM to
underestimate WTP.

While this is a legitimate concern, we will be able to look for evidence of this effect by comparing
WTP as measured by BDM to behavior at fixed prices. If there was systematic underestimation of
WTP using BDM, the above criticism might be playing a role. However, this does not correspond with
the patterns we observe.

6This is because the BDM game acts as an instrument for take-up for an impact evaluation of insurance, to be
described in a future paper.

7We make the top of the distribution equal to the offer price due to the fact that regulations prevent us from selling
insurance above the market price, and evidence in Bohm et al. (1997), which shows that BDM performs better when the
upper bound on the offer distribution is the market price. While we didn’t address the distribution of offers with the
subjects, experiments in Mazar et al. (2010) suggest that exposure to different price distributions will change a subject’s
stated WTP.
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5.3 Tests of BDM Implementation

In April and May 2010, SEWA visited 3,351 households in 60 villages, of which 2,268 were assigned to
play the BDM game. In a large implementation like this, there are likely to be some errors in the field.
These worries are magnified by the fact that explaining and implementing the BDM game is somewhat
complicated, and there may be opportunity for collusion between the facilitator and player of the BDM
game. Fortunately, we can use the data collected to test the validity of the BDM implementation. In
this section we present an overview of possible concerns and data either supporting or rejecting these
worries.

There are a handful of specific things that we thought could have affected our field implementation.
First, some scratch cards may have been lost, and if this was correlated with the outcome of the BDM
game it could potentially bias our results. Next, people may have scratched the cards before they
recorded their final offer price. There is also the worry the people may “win” the game by scratching
off a bid lower than their offer but then decline to actually purchase the policy. Finally, people may
be influenced by the test BDM game for the napkin.

We take each of these concerns in turn. Data analysis relating to these issues is available in
Appendix Section A.3.

• Censoring of Cards: In order to check for censoring of cards, we can check whether the
distribution of the BDM offers from people who played the cards in the field is the same as the
distribution generated on all the cards. This does seem to be the case, as the equivalence of
the distributions cannot be rejected by a number of statistical tests. We therefore think that
censoring of cards was not a large issue.

• Scratching Cards Before Stating WTP: If people saw the offer price before they made
their bid (and it affected the bid), we should see a correlation between BDM bids and offers.
Unfortunately we do see this, indicating some lapses in implementation in the field. However, the
result is a bit puzzling, as we see a positive correlation in two districts and a negative correlation
in the third. (Each of the three districts in our sample had different marketing teams.) The
positive correlation could make sense for a few reasons. First, people who had offers less than
their bids but then decided they didn’t want to purchase the policies may have lowered their bids
after the fact. Next, people who had offers higher than their bids may have decided that they
did want to purchase the policy at that offer price, and therefore raised their bids. Finally, it is
possible that people simply viewed the offer price before they made their bid, making it a type
of price anchor. The negative correlation in the single district is difficult to justify.

• Refusal to Purchase Policy: When someone scratches off an offer price below their bid, they
are technically required to purchase the insurance at the offer price. However, around 10% of the
people who won the game refused to purchase the insurance. This most likely arose due to the
fact that the ability to purchase insurance is affected by liquidity constraints, which may not be
well known at the time of making their bid. Respondents had two weeks to come up with the
money, and some may not have been able to collect sufficient funds to purchase the policy. Most
respondents who refused to purchase the insurance after winning the game claimed they did not
have the money available.

• Insurance Bid Influenced By Napkin Game: We played the BDM game with each respon-
dent first for a napkin to show how the BDM game works. In theory this should have no effect
on WTP for rainfall insurance, but we do find it affects the BDM bid. A 1 Rs increase in the

16



price offered to purchase the napkin (which is revealed by scratching the card) correlates with an
increase in the BDM Bid (expressed as percentage of premium) by 1.5 percentage points. (The
standard error of this estimate is .42%) The mere fact of winning the napkin game may also
have a strong negative effect on the BDM bid. This result seems to indicate a misunderstanding
of how BDM works, as maybe people thought that they could achieve a better outcome in the
insurance game by taking the results of the napkin game into account.

While there were clearly some irregularities in our implementation of BDM, it is difficult to understand
what it means for our interpretation of the BDM bids. There is no rational reason that someone should
change their BDM bid after viewing the BDM offer unless viewing the offer somehow changes their
preferences. Similarly, experience with the unrelated napkin game should not affect preferences over
rainfall insurance. This behavior likely reveals more subtle clues as to the nature of WTP. Perhaps it
is somewhat misleading to think that people have an intrinsic, unchanging WTP, and simply seeing
the price that they could have paid changes their demand for the product.

Despite these doubts, we consider testing against fixed price demand to be the best test of BDM
validity, which we do in the next section. While our results are somewhat mixed, they indicate overall
that BDM gives an accurate measure of WTP.

5.4 Test of BDM against Fixed Prices

If BDM is eliciting the true WTP, then the percentage of people who have a WTP over a certain
threshold should be the same as the percentage who purchased when offered a corresponding fixed
price. Participants who were on our list but were not previously surveyed randomly received either the
opportunity to play the BDM game or fixed prices of Rs 100 or Rs 130 for one policy. We can therefore
compare the decisions among these two groups to assess the validity of BDM. Note that although we
played the BDM game for one or four policies, we only offered varying fixed prices for single policies.
Therefore, we just use the single policy results for this comparison.

We offer a graphical comparison of the two demand measures in Figure 4, which plots the demand
curve for insurance as predicted by BDM and also demand as observed at the fixed price points. The
dark demand curve reflects the demand as a percentage of everyone who filled out a scratch card. The
lighter curve assumes that everyone who did not fill out a card had a WTP of zero, and includes the
full sample. The two columns for fixed price purchasing have analogous definitions. The dark bars
restrict the sample only to those who filled our cards, while the light bars include the full sample.

Figure 4 shows that demand predicted by BDM is close to fixed price demand at a price of RS
100, but is much lower at a fixed price of Rs 130. In Table 6 we directly compare the demand at these
prices.

In Column 1 we consider the entire population of people who filled out scratch cards. Here we
see that while 81.75% of people who played the BDM game bid greater than or equal to Rs 100,
only 71% of people purchased at a price of Rs 100. This suggests that BDM is overestimating the
true WTP. Column 1 also makes the same comparison with people who received a fixed price of Rs
130. In this comparison, BDM performs far more poorly, with only 20% of people bidding Rs 130 or
more, while 58% of people purchased when offered a fixed price of Rs 130. This suggests that BDM is
underestimating the true WTP.

In Column 2 we assume that households who refused to play the scratch card game would not have
purchased if offered any discount, and also would have bid less than Rs 100 if they had agreed to play
the BDM game. While adding this group to the analysis mechanically makes the BDM correspond more
closely to fixed discounts, omitting the group arguably improperly censors people with low insurance
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Figure 4: Comparing BDM Bids to Fixed Price Decisions for Non-Surveyed Population
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Table 7: Regression Comparing BDM to Fixed Discounts

Sample is Non-Surveyed Customers in 2010

Played Card Full Sample Played Card Full Sample

(1) (2) (3) (4)

BDM 0.0939** 0.0379 -0.367*** -0.216***

(0.0445) (0.0376) (0.0636) (0.0312)

Constant 0.718*** 0.442*** 0.580*** 0.334***

(0.0230) (0.0196) (0.0336) (0.0160)

Observations 678 1113 665 1132

R-squared 0.237 0.157 0.277 0.195

Robust standard errors in parentheses Village Fixed Effects

*** p<0.01  ** p<0.05  * p<0.1 Village Level Clustering

Fixed Price of Rs 100 Fixed Price of Rs 130

demand. In this analysis we see that 43.6% of people bought at a fixed price of Rs 100, while 48.5%
gave BDM bids greater than or equal to Rs 100. This comparison is much closer than in Column 1, but
still suggests that BDM is overestimating WTP. The comparison with prices of Rs 130 also improves
compared to Column 1, but still suggests that BDM underestimates WTP.

To get a more quantitative comparison of BDM and purchasing behavior from fixed discounts we
can adopt a regression framework akin to that of Berry et al. (2011). To do this we create a dummy
variable that takes a value of 1 if the participant was assigned the BDM game and their bid was greater
than or equal to the fixed discount threshold or they were assigned a fixed discount and purchased
insurance. We regress this dummy on a variable that takes a value of 1 if the participant was assigned
the BDM game and zero if they were assigned a fixed price. A positive coefficient means that BDM
gives a higher value of WTP than you would expect from looking at the behavior of people assigned
fixed discounts. Results are presented in Table 7.

The results in Table 7 confirm the comparisons outlined in Table 6. We see that BDM generally
gives inflated values of WTP compared with a fixed price of Rs 100 but decreased values compared
with a fixed price of Rs 130. However, when we include the full sample in Column 2, we see that there
is no significant difference in measured WTP when compared to a fixed price of Rs 100.

This analysis is clouded by the existence of focal points in the BDM data. From viewing the
histogram of BDM bids for 1 policy in Figure 5, we can see that the majority of bids are the “round”
numbers of 50 and 100. As a price of Rs 130 failed to encompass even the largest of these focal points,
BDM appears to drastically underestimate WTP. The fixed price of Rs 100 probably provides a more
realistic comparison, as this discount corresponds exactly to a focal point of the BDM bid distribution.

We argue that the fixed price of Rs 100 gives the most reliable comparison, and that the correct
population to consider is the sample of all people who were visited to market insurance, even if those
people refused to play the scratch card game. Using this benchmark, BDM performs very well, as
there is no significant difference in buying behavior for those assigned BDM versus those offered fixed
prices.

These results are notably different than those of Berry et al. (2011), who find that BDM consistently
undervalues WTP (compared to fixed price offers) through a number of frames and sub-treatments.
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Figure 5: Histogram of BDM bids for 1 Policy
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6 Test of BDM against the Theoretical Model

In this section we compare the WTP results from our theoretical model and the BDM procedure. We
start by examining the demand curves as predicted by the model and BDM, and then look at whether
the estimated WTP from the model has predictive power for BDM bids.

6.1 Demand Curves

In Figure 6, we plot the predicted demand curves for 1 insurance policy from both the theoretical
model and from BDM. We include the full sample of those visited in the BDM plot, assigning a WTP
of zero to people who refused to play the scratch card game. As expected from previous analysis, the
theoretical model predicts a higher WTP at all price levels.

There are a couple of caveats to keep in mind when comparing the two demand curves, especially
when looking at the lowest or highest prices. While people who refused to play the scratch cards likely
had low WTP, we simply assigned a zero WTP to this population, potentially underestimating WTP
at low prices.

Similarly, people playing BDM had no incentive to ever bid more than the maximum price of the
offer distribution, which was Rs 150. Accordingly, there were very few BDM bids above the maximum
offer price of Rs 150. Perhaps this is due to people not exactly understanding the game, as they may
have thought that by bidding less they were more likely to get a good deal. While we didn’t offer
anyone a fixed price of Rs 150, it is unlikely that no one would have bought at this price, as previous
years’ experience with the same population tells us that roughly 10% of people are willing to purchase
insurance at market price. Therefore, BDM bids near 150 may actually reflect people with WTP
greater than 150. Even with these caveats taken into account, the model clearly predicts higher WTP
than the BDM game.

As we also played the BDM game for 4 policies, we can generate similar demand curves for a
package of four policies, which is presented in Figure 7. Once again, we see that the theoretical model
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Figure 6: Demand Curves for 1 Policy
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predicts higher WTP at all levels compared to BDM.

6.2 Can the model predict BDM bids?

While the previous analysis showed that the model predicts higher WTP than BDM, it is still possible
that the estimated WTP at an individual level will be correlated with the BDM bids. To explore this
we regress the BDM bids on the estimated WTP from the model, presenting the results in Table 8. In
Column 1 we include only people who filled out scratch cards, and regress the BDM bid on a dummy
that takes a value of 1 if the participant played the BDM game for 1 policy (as opposed to 4 policies)
along with the model’s predicted WTP. In this specification we see a positive yet insignificant point
estimate on the model’s predicted WTP.

In Column 2 we include the full sample, assigning a BDM bid of zero to people who were assigned
the BDM game yet refused to play. In this specification the point estimate is higher, indicating that
an increase of Rs 100 of the predicted WTP is associated with an increase in the BDM bid of Rs 27.
However, the estimate is only statistically significant at the 12% level.

7 Discussion

Our results have shown that, with some caveats, BDM provides an accurate measure of WTP. In
contrast, a simple model overestimates WTP in the aggregate, and provides only weak predictions of
WTP at the individual level. In this section we discuss some limitations of the model and ways it can
be improved.
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Figure 7: Demand Curves for 4 Policies
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Table 8: Individual Comparison of BDM Bid and Predicted WTP
Table 9

Dependent Variable is BDM Bid
Filled Card Only Full Sample

(1) (2)

WTP Predicted by Model 0.224 0.268
(0.163) (0.170)

Game for 1 Policy -87.61 -8.061
(72.29) (75.04)

Constant 155.2 41.21
(97.11) (100.9)

Observations 744 1045
R-squared 0.473 0.198
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Page 1
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Table 9: Risk Aversion and Insurance Purchasing

Year 2006 2007 2008 2009 2010
(1) (2) (3) (4) (5)

Risk Aversion -0.0895** 0.0115 -0.0223 0.0194 0.0661*

(0.0341) (0.0329) (0.0236) (0.0299) (0.0337)

Risk Aversion Squared 0.00895** -0.0000841 0.00159 -0.00197 -0.00921**
(0.00438) (0.00439) (0.00303) (0.00395) (0.00443)

Constant 0.305*** 0.317*** 0.203*** 0.149*** 0.537***
(0.0473) (0.0412) (0.0359) (0.0338) (0.0444)

Observations 315 824 765 725 756
R-squared 0.034 0.003 0.006 0.002 0.008
Robust standard errors in parentheses Errors Clustered at Village Level
*** p<0.01, ** p<0.05, * p<0.1

7.1 Insurance Demand and Risk Aversion

As described in the introduction, we do not include some features that others argue are important
in determining insurance demand, such as ambiguity aversion (Bryan, 2010). This model, along with
that of Clarke (2011) suggests that there may not be a simple relationship between risk aversion and
demand for insurance. Since one main source of heterogeneity in our model is the coefficient of relative
risk aversion, this relationship is important for the functioning of the model.

In Table 9 we regress a dummy which takes the value of 1 if the individual purchased insurance
on risk aversion and risk aversion squared for each year of our study. In Column 1 we reproduce the
results in Cole et al. (2010), showing that people with higher risk aversion had lower insurance demand
in 2006, though the positive squared coefficient shows that these results weaken for high levels of risk
aversion. However, these results disappear in subsequent years, with all significant correlation between
risk aversion and insurance demand disappearing between 2007 and 2009. In 2010 there is a positive
yet diminishing relationship between risk aversion and insurance demand. In a way, these results are
consistent with a story of ambiguity aversion, as one may expect ambiguity towards a new product to
decrease over time. However, the positive coefficient in 2010 suggests that ambiguity aversion is no
longer much of a factor for our sample.

Clarke (2011) focuses on the possibility that basis risk can make an insured individual worse off
than an uninsured individual in a bad state of the world. Under certain circumstances, the demand
for insurance can be increasing then decreasing in risk aversion, which is supported by the results in
Column 5 of Table 9. People with low levels of risk aversion are uninterested in insurance (assuming
there is premium loading), while people with high risk aversion will not want to take the risk of paying
for a policy and subsequently suffering a loss that is not covered by the insurance policy.

While our model contains many of the same mechanisms as those of Clarke (2011), over the range
of risk aversion in our sample our model always predicts WTP to be increasing in risk aversion. The
main reason for this difference is in the structure of shocks and basis risk. In Clarke’s model (and
numerical example), there are many situations where people experience a heavy rainfall shock yet
receive no payout, which makes insurance especially unattractive for the risk averse. In our model
this situation still exists, but is less common. It is possible that our structure of basis risk does not
adequately expose this possibility, causing our model to overestimate WTP.
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7.2 Household Characteristics and WTP

While our theoretical model only weakly predicts BDM bids, it admits risk aversion and basis risk
as the only sources of individual heterogeneity, and may miss other important individual factors that
affect demand for insurance. In Table 10 we take a look at correlations between a number of household
characteristics and BDM bids, which may give insight into other drivers of WTP.

Table 10 contains two types of outcome variables. The first labeled “BDM Bid/Total Price - Filled
Card” is the BDM bid divided by the premium. We scale it this way so that we can easily pool together
analysis for people who received the BDM game for 1 or 4 policies. This sample contains only surveyed
households who filled out their scratch card. The second outcome, labeled “BDM Bid/Total Price –
Full Sample” contains the full sample of surveyed participants, with their BDM bid being set to zero
if they refused to play the game.

In Panel A we report the correlation of BDM bids with a number of household characteristics.
Columns 1-2 report the coefficients obtained from regressing the outcome variables on each covariate
individually. In Columns 3-6 we repeat the regressions with all right hand side variables included at
once, and also run them with or without fixed effects.

The results give some evidence that people who have experienced drought recently, store goods, or
have a loan from SEWA have lower insurance demand. People who have used other forms of SEWA
insurance or have higher risk aversion are more likely to purchase insurance. But none of these results
is robust across all specifications.

One interesting result comes out of our financial literacy variable, which measures the respondent’s
ability to answer a few simple questions about savings and credit. Just taking into account the people
who filled out scratch cards, people with higher financial literacy tended to give a lower WTP. But if we
include the full sample, then there is a positive correlation between financial literacy and WTP. This
seems to indicate that people with higher financial literacy were more willing to play the BDM game
(maybe due to the fact that they were more open to purchasing insurance), but had lower valuations
conditional on playing that game.

Some other results are a bit counterintuitive. We would expect people who had lower risk exposure
to have lower demand for insurance. This prediction is borne out somewhat in the data, as people who
store goods have lower demand. But the amount spent on farm inputs, which we would think would
be positively correlated to risk exposure, was negatively correlated to insurance demand. One theory
is that this might reflect stronger liquidity constraints, but if liquidity constraints were a driving factor
then access to credit would increase purchases. However, people who have loans from SEWA (which
is an indication of access to credit) have lower demand.

Panel B restricts the sample to people who purchased rainfall insurance in 2009, and looks at
the correlation between their experiences with insurance and their BDM bid the next year. There is
some evidence that people who received a payout or reported higher satisfaction with insurance have
greater insurance demand. We also include a variable called “Understanding of Product” which is the
percentage of simple questions about rainfall insurance that they answered correctly. This variable is
not significant in any of the specifications.

Overall, the results in Table 10 suggest that the most important factors related to insurance demand
that are omitted from our model are dynamic considerations. This suggests that a model which takes
into account previous experience with insurance may have better predictive power.
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Table 10: Correlates of WTP

Univariate Multivariate

Dependent Variable: BDM bid / Total 

price

BDM bid 

(zeroed)

BDM bid / Total 

price

BDM bid / 

Total price

BDM bid 

(zeroed)

BDM bid 

(zeroed)

(1) (2) (3) (4) (5) (6)

Panel A: All Survey Respondents

Total expenditure (Rs '0000)† -0.004 -0.003 -0.003 -0.002 -0.003 -0.003

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

Total savings (Rs '0000)† 0.001 0.010 0.003 0.005 0.007 0.005

(0.008) (0.012) (0.008) (0.009) (0.014) (0.010)

Experienced drought -0.092 -0.118 -0.075 0.002 -0.104 0.033

(0.028)*** (0.033)*** (0.027)*** (0.023) (0.030)*** (0.028)

Experience SEWA insurance 0.076 0.064 0.088 0.056 0.039 0.048

(0.024)** (0.033)* (0.027)*** (0.026)** (0.034) (0.033)

Financial literacy -0.111 0.072 -0.092 -0.024 0.113 0.045

(0.050)** (0.052) (0.052)* (0.046) (0.056)* (0.059)

Input spending (Rs '0000)† -0.044 -0.037 -0.022 -0.016 0.007 0.023

(0.017)** (0.024) (0.022) (0.029) (0.026) (0.031)

Basis risk -0.003 -0.004 -0.001 0.000 -0.004 0.000

(0.003) (0.004) (0.003) (0.000) (0.004) (0.000)

Uses HYV seeds 0.003 -0.020 0.019 0.010 0.007 -0.000

(0.018) (0.025) (0.019) (0.019) (0.026) (0.026)

Stores goods -0.066 -0.115 -0.026 -0.010 -0.075 -0.058

(0.034)* (0.063)* (0.033) (0.041) (0.059) (0.058)

Risk Aversion 0.004 -0.004 0.027 0.005 0.041 0.021

(0.004) (0.006) (0.014)* (0.015) (0.020)** (0.018)

Risk Aversion Squared 0.000 -0.001 -0.003 -0.001 -0.006 -0.003

(0.001) (0.001) (0.002) (0.002) (0.003)** (0.002)

Discount factor -0.074 0.013 -0.095 -0.031 -0.025 -0.068

(0.072) (0.068) (0.062) (0.066) (0.065) (0.076)

Holder of loan from SEWA -0.032 -0.014 -0.004 0.009 0.012 0.042

(0.017)* (0.024) (0.017) (0.020) (0.023) (0.022)*

Game for 4 policies -0.199 -0.155 -0.198 -0.195 -0.160 -0.168

(0.019)*** (0.022)*** (0.019)*** (0.018)*** (0.021)*** (0.019)***

Constant 0.830 0.710 0.527 0.501

(0.057)*** (0.057)*** (0.074)*** (0.069)***

FE NO NO NO YES NO YES

Observations 745 1018 745 745 1018 1018

R-Squared 0.239 0.386 0.104 0.292

Panel B: People who Purchased Insurance in 2009

Satisfaction with rainfall insurance 0.01 0.019 0.009 0.020 0.016 0.040

(0.007) (0.010)* (0.007) (0.014) (0.010) (0.012)***

Understanding of product 0.021 0.017 0.034 0.050 0.062 0.016

(0.043) (.069) (0.040) (0.064) (0.065) (0.071)

Payout last year (survey) 0.04 0.175 0.042 0.006 0.176 0.096

-0.048 (0.044)*** (0.047) (0.132) (0.044)*** (0.096)

Game for 4 policies (0.154) -0.181 -0.158 -0.189 -0.188 -0.222

(0.043)*** (0.053)*** (0.045)*** (0.060)*** (0.055)*** (0.060)***

Constant 0.627 0.609 0.409 0.387

(0.044)*** (0.056)*** (0.068)*** (0.063)***

Village Fixed Effects NO NO NO YES NO YES

Observations 154 203 154 154 203 203

R-squared 0.122 0.363 0.151 0.437

Robust Standard errors  in parentheses † Windsorized at top 1%

* significant at 10%; ** significant at 5%; *** significant at 1% Standard errors clustered at the village level
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8 Conclusion

This paper outlined two approaches for measuring willingness-to-pay (WTP) for rainfall index insur-
ance, and evaluates their effectiveness by comparing their predictions to decisions made my people
facing fixed priced. The first approach a structural static model that generated predictions of WTP
based on an individual’s risk aversion and basis risk. We found that this model significantly overes-
timated WTP. We also implemented the BDM mechanism in the field, and found that it performed
much better. While there were some problems with the BDM procedure that make the results hard
to interpret (correlation of BDM bids and offers, focal points in BDM bid distribution), BDM gave
predictions that were consistent with buying behavior of people who faced a fixed price of Rs 100.
Finally, we found that our model’s did have some predictive power over the BDM bids, but that the
correlation between the two was weak and only significant at the 12% level.

One main shortcoming of this paper is that we were unable to conclusively determine the cause of
our model’s failure. While it is possible to tweak the parameters of the model such that its predictions
correspond more closely with observed behavior (for instance, by assuming greater risk exposure and
lower beliefs about expected payouts), we don’t have any evidence that these calibrations are actually
what is driving the shortcomings of our model. Most likely, a richer modeling framework will be
necessary to generate trustworthy predictions of WTP.

The results from this paper have a number of policy implications. First, the distribution of WTP
(as measured using BDM) shows us that in order to have high adoption of rainfall insurance, the
policies must be heavily subsidized to above actuarially fair levels. Our data shows that in order to
get 50% take-up of a single insurance policy, it needs to cost around Rs 100, which is roughly 2/3 the
actuarially fair price. In order to get 50% takeup of a bundle of four policies the price needs to drop
to around Rs 250, which is less than 50% of the actuarially fair value. For policy makers looking to
promote risk mitigation among poor farmers, this suggests that very heavy subsidies will be necessary
to convince farmers to purchase index insurance.

But one question that is still open is why demand for insurance is so low. Our model, which focused
heavily on how basis risk can make insurance less attractive for the risk averse, still predicts much
higher WTP than we see in practice. Generating the correct policy response depends on figuring out
which mechanism is at play that we have not accounted for in the model. If people actually have
other risk coping mechanisms so that rainfall shocks are not as damaging as we assume, then perhaps
subsidizing rainfall insurance is a foolhardy effort. But if people are not buying because they don’t
understand its value, then perhaps WTP will increase over time as people become more familiar with
insurance.

This suggests that it may be appropriate to take a dynamic approach to insurance demand, seeing
how previous experience with rainfall insurance affects future demand. In the first three years of our
study (2006-2008) we didn’t see any insurance payouts, and the insurance payouts in 2009 were very
modest, making any type of dynamic analysis difficult. However, there were large insurance payouts
in some areas in 2010. In a future paper, we will look at how recent experiences with insurance can
affect insurance demand, and hope this can improve on the static approach developed here.
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Table A1.1: Risk Factors

Appendix Table 1

!""#$%&'()*+,(#)&(-+.&/0+!1*#/&$2+3$*44&5&*2)

6('7-*

8*(9+

,(:$44

;(&-/+

,(:$44 .&/0+<*1*-

=""*#+

>$?29

<$@*#+

>$?29

3$*44+=/*9+4$#+

.*A#*//&$2/

,*#5*2)(A*+$4+

.*/"$29*2)/

B CD CD E%)#*'* F GHDB GHD IHJB

C CJ KD L*1*#* GHDB BHGK JHMBD IHNM

J CN MN O2)*#'*9&()* BHGK NHPBC BHBPI BKHB

K BP MJ O2*44&5&*2) NHPKGD BGHNP

D BD GD Q$9*#()* NHPBC NHJBM NHDNM BNHKP

M BN PN O2*44&5&*2) NHJJG BGHIP

G D ID L-&AR)S)$ST*?)#(- NHJBM N NHBMP GHGM

P N BNN T*?)#(-S)$ST*A()&1* N +SF NHNB BKHCJ

Page 1

A Appendix

A.1 Risk Factors

In order to calculate risk factors, we use answers from games played during the household surveys.
Each participant was asked to choose a list of lotteries that would be settled with a coin toss. The
lotteries increased in both risk and expected payout, and the participants received the payout in real
money at the end of the survey. We estimate CRRA risk aversion coefficients using the partial risk
aversion coefficient, as calculated by Binswanger (1981). Table A1.1 shows the various gambles offered
and calculated coefficients of risk aversion.

A.2 Model Sensitivity Tests

In this section we look at how varying some of the parameters of the structural model affect its
predictions. In Figure A1.1 we first look at how varying the subject’s expectation of premium loading
changes insurance demand. To do this we change the amount of payouts in our model until they
correspond to lower or higher payouts on average. The standard deviation of the estimate of expected
payouts is 21% of the premium, so we present the results of the model with a loading factor of -42%,
-21%, 21%, and 42%.

As expected, this has a large effect on insurance demand, and if customers had lower expectations
of insurance payouts, this could partially explain the gap between the model and observed demand.

Next, we consider how the ratio of potential losses to wealth affects insurance demand. We would
expect that people with larger wealth (keeping potential losses constant) would have lower insurance
demand since with CRRA utility risk aversion decreases with wealth. This is exactly what we see
in Figure A1.2. Doubling wealth from the baseline of 41800 decreases insurance demand but not by
much. Decreasing wealth increases demand, but most of this effect comes at high prices. Although
not shown on the graph, further analysis shows that this demand for insurance at high prices is driven
by people with high levels of risk aversion.

Finally, insurance demand can be sensitive to basis risk. In our model the correlation between
rainfall used to calculate shocks and rainfall used to calculate payouts varies based on the distance
between someone’s village and the reference rainfall station, which varies from roughly .63 to .67. In
Figure A1.3 we present the demand curve for different levels of constant basis risk, ranging from no
correlation between the income shock and payouts to perfect correlation of the rainfall used to calculate
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Figure A1.1: Sensitivity to Premium Loading
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Figure A1.2: Sensitivity to Wealth
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Figure A1.3: Sensitivity to Basis Risk
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income shocks and payouts. As expected, higher basis risk leads to lower demand, but the effect is not
extremely strong. Even at zero correlation, predicted demand is above observed demand.

A.3 BDM Implementation

A.3.1 Scratch Cards

An example scratch card used to deliver the BDM game is shown in Figure A1.4. The text in the
top panel translates to “Scratch Here to Reveal Discount”. This panel was scratched first, revealing
whether the customer was going to play the BDM game or receive a fixed discount. If they were
supposed to play the game, they next played a practice game for a napkin. Top left boxed on the
back of the card provided a space to write the bid for the napkins, and then the second scratch panel
revealed the napkin offer price. The bid for insurance went into the bottom left boxes on the back of
the card, and the offer for insurance was under the bottom right scratch panel.

A.3.2 Censoring of Cards

When participants ended up purchasing a policy as a result of the BDM game, the enumerators had
high incentives to carefully record the participants’ bid, as this would be proof that they won the game
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Figure A1.4: Example Scratch Card. Left is front, Right is Back.

Figure A1.5: Distribution of BDM offers. Left is offers seen in the field. Right is offers generated on
all the cards.

Appendix Figure 2

The other problem that could happen in the field is censoring of cards. Possibly people with certain 
outcomes threw away the card or filled out other peoples' cards instead.  If this happened then there 
should be a different distribution of the BDM offers between all generated cards and those filled 
out.  The above graphs show that there isn't really a difference, but we should show that they pass 
real tests (ksmirnov) as well.
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and therefore were allowed to purchase at a discounted price. But when participants “lost” the game,
meaning they did not purchase the policy, we worry that the BDM bid may have not been reported. If
this was true, then we would expect the cards that were filled out in the field to have the distribution
of their offer prices skewed downward.

Figure A1.5 graphs the histograms of these two distributions side by side, and they seem to be quite
similar. A Kolmogorov-Smirnov test is unable to reject the null hypothesis that the two distributions
are the same. Similarly, a Fisher exact test (using five bins) cannot reject the hypothesis that there
were different distributions on cards that were scratched off in the field versus those that were not.

A.3.3 Correlation of BDM Price to BDM Offer

In Table A1.2 we observe a correlation between the BDM Offer and BDM bid, indicating that some
people saw the BDM offer before they committed to their bid.

Column 1 shows that there is a positive correlation overall between bids and offers, suggesting that
people changed their bids after seeing the offer price or had their WTP anchored by viewing the offer
price. Columns 2-4 perform the regression separately for each district (since each district had a different
marketing team), and reveals some puzzling heterogeneity. Patan and Ahmedabad districts show the
same pattern as the overall data, with an especially strong correlation in Ahmedabad. However, there
is a negative correlation between bids and offer in Anand, which is difficult to explain.
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Table A1.2: Correlation of BDM Bids and BDM Offers
Appendix Table 3
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A.3.4 Napkin Correlation

As shown in Table A1.3, the outcome of the napkin game seems to have influenced the BDM bids of
the participants. Column 1 regresses the BDM bid on the napkin offer, finding that an increase of 1
Rs in the napkin offer is correlated with a 1.5 percentage point increase in the BDM bid. It is possible
that the mechanism for this effect is whether or not the participant won the napkin game. In Column
2 we regress the BDM bid on a dummy which takes a value of 1 if the participant won the napkin
game. This yields an insignificant coefficient, but this specification is of dubious quality due to the
likelihood of unobserved variables that would drive both the napkin bid and BDM bid. If one is willing
to believe that the only channel in which the napkin offer can affect the BDM bid is through winning
the napkin game, we can instrument for winning the napkin game with the napkin offer. We do this
in Column 3, and see that winning the napkin game causes BDM bids to decrease by an astonishing
32 percentage points.
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Table A1.3: Napkin Game

Appendix Table 4

Dependent Variable is BDM Bid as % of premium
OLS OLS IV
(1) (2) (3)

Napkin BDM Offer 0.0150***
(0.00417)

Won Napkin Game 0.0435 -0.316***
(0.0321) (0.0765)

Constant 0.553*** 0.564*** 0.891***
(0.0276) (0.0277) (0.0642)

Observations 1450 1450 1450
R-squared 0.021 0.003 .
Robust standard errors in parentheses Standard Errors Clustered at Village Level
*** p<0.01, ** p<0.05, * p<0.1
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