
How Sustainable Are Benefits from Extension for Smallholder Women Farmers? Evidence from a 'Reverse-Randomized Control Trial' in Uganda

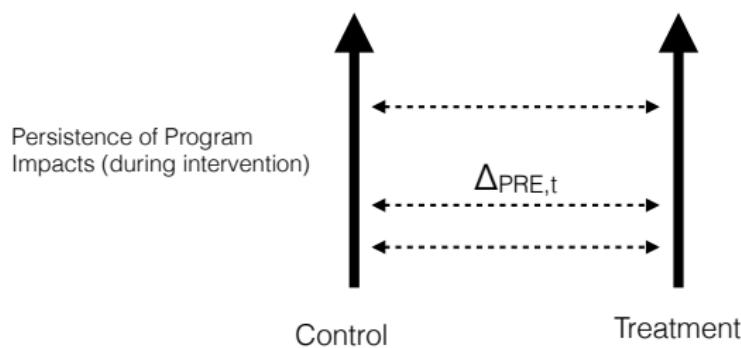
Vida Bobić, Ram Fishman, Stephen C. Smith and Munshi Sulaiman

January 14, 2016

Introduction

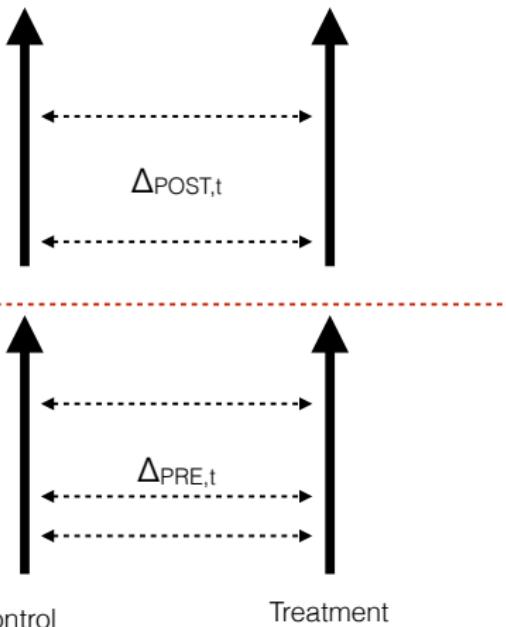
- Renewed research and policy focus on raising agricultural productivity in Africa
- Important as a poverty eradication strategy where a large majority of the poor remain in smallholder agriculture
- Farm yields remain multiples lower than seen in demonstration plots in countries such as Uganda: Why?

Source: Sasakawa Africa, personal communication.

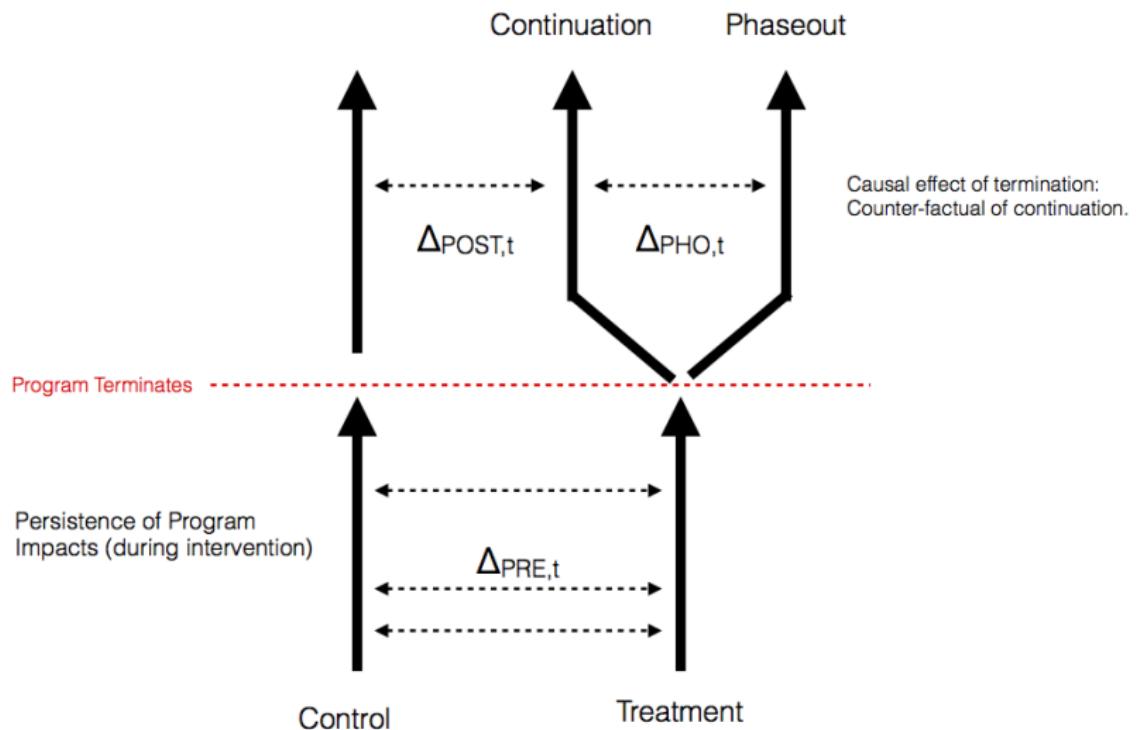

Notes: Number of plots in parentheses. Open pollinated improved varieties in all cases except Nigeria, which uses hybrids. Data for 2001 for Ethiopia, Mozambique, Nigeria, and Uganda; 2002 for Malawi; and an average of 2001, 2002, and 2004 for Mali.

- African cereal yields hypothesized to remain low due to low usage of improved seeds
- Lack of farmer knowledge (informational barriers) about seeds and other inputs, and lack of input markets are widely cited as key constraints
- Other concerns include low usage of fertilizers, irrigation, credit, insurance, and low access to output markets

Introduction


- We address a fundamental question: how sustainable are benefits from agricultural extension programs for smallholder women farmers?
- Development projects generally consist of short term interventions
- An implicit assumption is that intervention impacts are sustainable and long-lasting
- But sustainability is seldom tested
- Most impact evaluations are short term
- We introduce a new method for research on program sustainability and impact persistence
- *Reverse randomized control trial* - an intervention is ended for a random sample of participants or continued only in a randomized subsample of the treatment population

Methodological Contribution



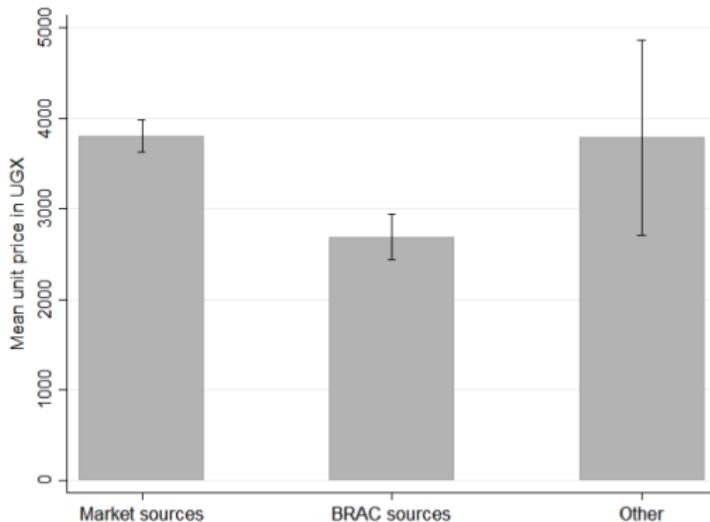
Methodological Contribution

- Long-Term Impacts of Initial Intervention (e.g. Baird et al, 2015)
- “Learning” (Kremer and Miguel, 2007; Dupas, 2014; , Duflo et al, 2011; Carter et al, 2014)

Methodological Contribution

Research questions and findings to date

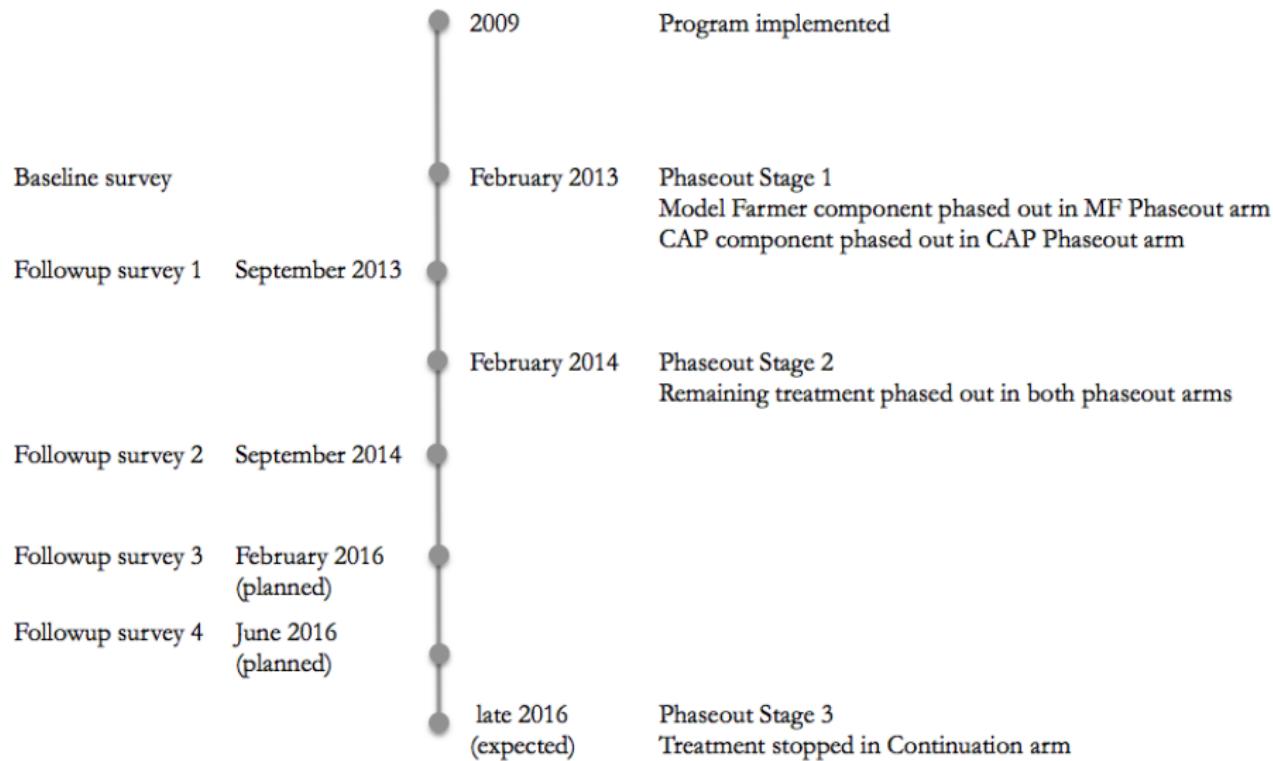
- Are agricultural extension activities (and any of their effects) sustainable after all or some aspects of external support are discontinued or scaled-back?
- Key findings 3 seasons after phaseout:
 - Effects of training appear to be sustainable, as the application of improved practices is unchanged a year and a half after phase-out
 - Improved input use remains high, as farmers in phased-out villages switch to market sources for purchases of improved seed albeit with a lag
 - Attempts to create and sustain local supply chains for improved inputs are less successful
 - Evidence suggests that the transition may take time after the phase-out, possibly resulting in a U-shape response - input use falls until the farmer finds a viable alternative source
 - Preliminary results - two rounds to go


Background

- BRAC Uganda agricultural program focused on female smallholder farmers, with the aim of increasing productivity by promoting the use of high-yielding variety seeds and improved farming practices
- The program featured two farmer leadership roles - Model Farmers and Community Agriculture Promoters
- Model Farmers (MF)
 - Provided training to 10-12 farmers in their village each season in improved cultivation practices (crop rotation, intercropping, line sowing, mixed cropping, zero tillage, pest management, utilization of green manure)
 - Encouraged the use of improved inputs - high-yielding variety seeds
 - Gave participating farmers a small quantity of BRAC-supplied improved maize seed for free

- Community Agriculture Promoter (CAP)
 - CAPs represent the local supply chain for high-yielding variety seeds
 - CAPs buy BRAC seed at below-market cost and sell it to farmers in their village; the possibility of realizing profits on these sales serves as an incentive for entrepreneurship
- CAPs and MFs were selected from among female farmers in treated villages and received weeklong training sessions each planting season
- Participants receive a small amount of money as reimbursement for travel and other costs

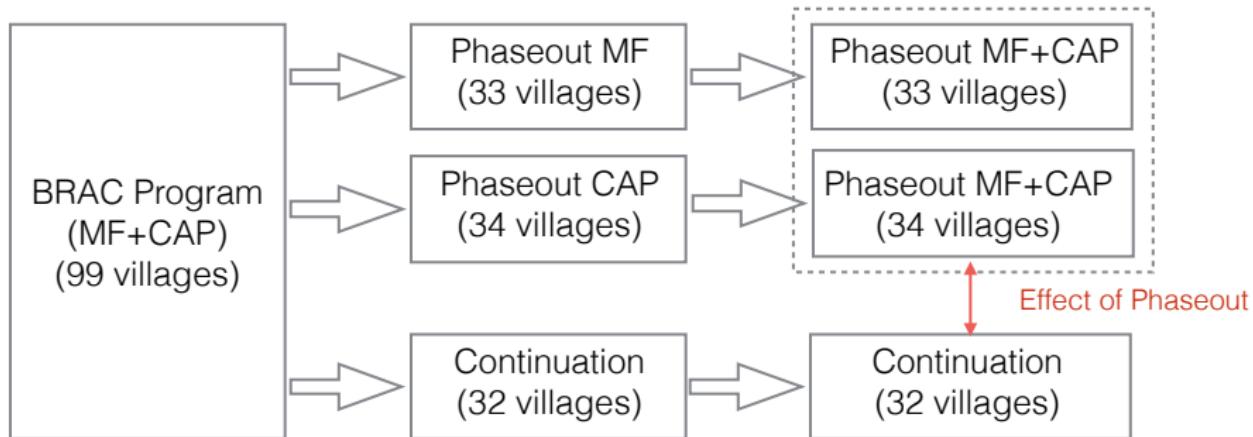
Background (cont.)


- A key program component: raising improved seed use - particularly for maize
- CAPs generally sold seeds at a significant discount (~20%) compared with market sources

Experimental design: Reverse RCT

- Experiment is based on a sample of farmers from 15 BRAC branches (BRAC organizational units) in Eastern Uganda
- 99 village clusters (1-2 geographically proximate villages) were identified which had both program components (CAP and MF) active prior to phase-out
- The two treatment components were phased-out sequentially
- Three experimental groups:
 - ① **Continuation** - program remains in place
 - ② **MF Phase-out** - MFs phased-out first, CAPs two seasons later
 - ③ **CAP Phase-out** - CAPs phased-out first, MFs two seasons later
- After the program was discontinued, phased-out villages were no longer visited by BRAC staff, given training, or offered incentives to participate in the program

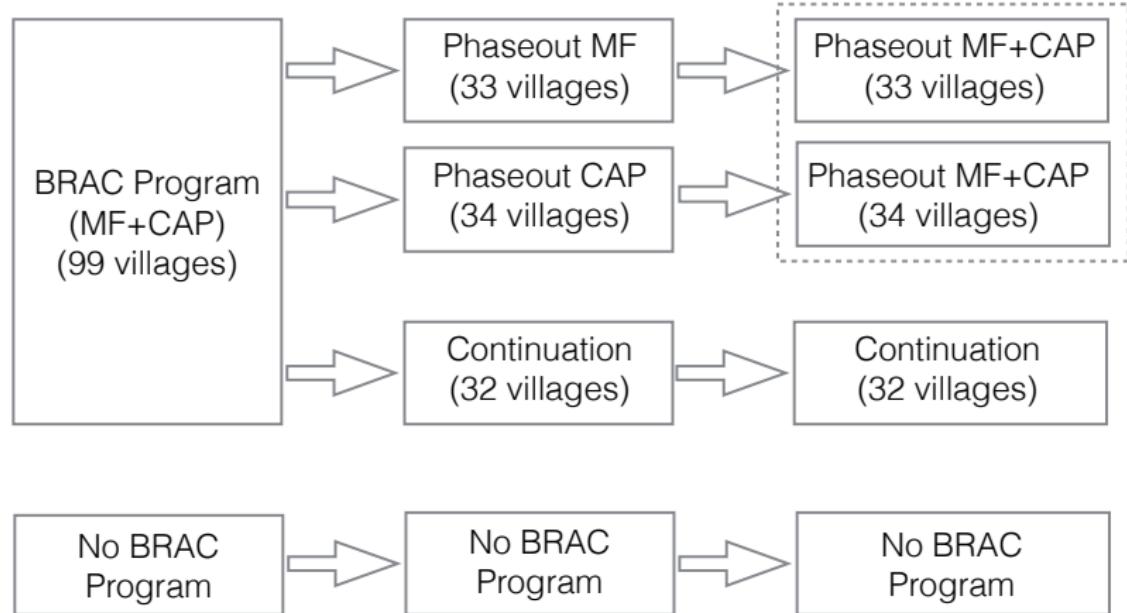
Experimental design: Timeline

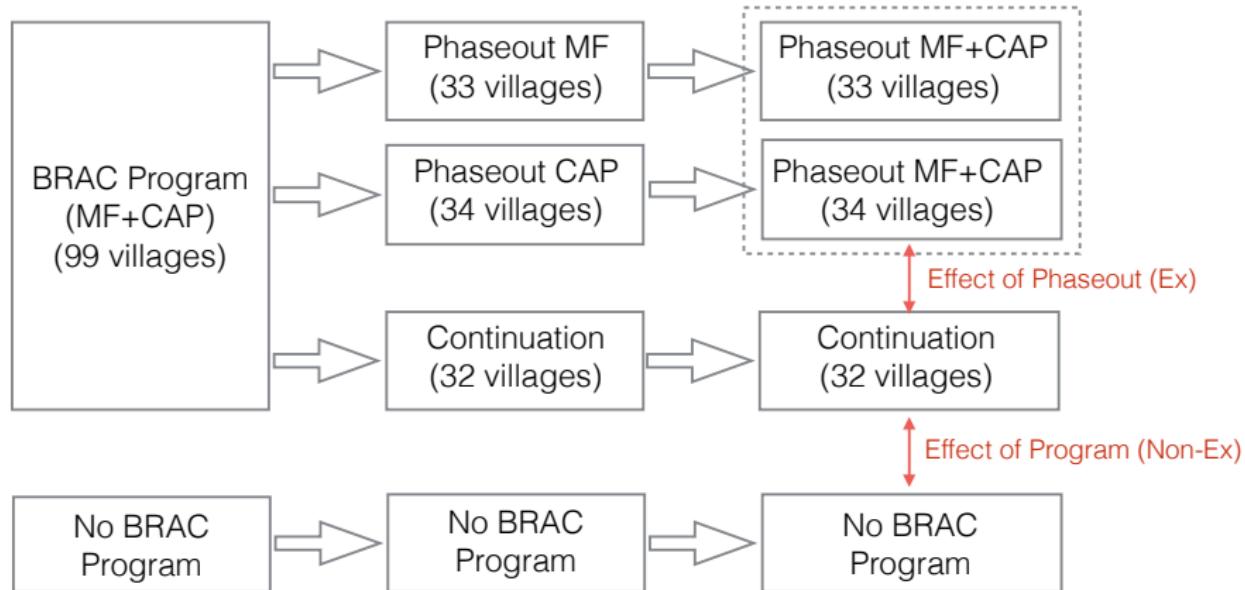


Experimental design: Reverse RCT

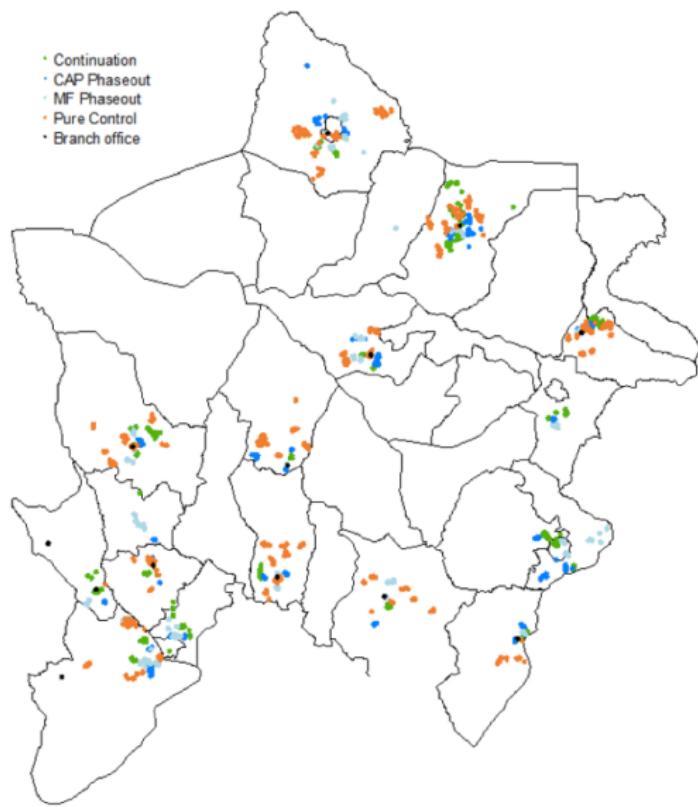
Why would we need a reverse-RCT to determine sustainability instead of simply following (RCT) samples after the program ends?

- Not clear why agricultural extension programs should end
- In the US, extension has operated continuously since at least 1870
- But, given that agricultural programs typically do end in Africa, need to evaluate the effect of doing so:
- If the program is halted altogether, then the counterfactual of program continuation cannot be observed:
 - Even if ex-participants retain gains from the program, we do not know if they would have fared even better had the program continued
 - Even if ex-participants lose gains from the program, we don't know this wouldn't have happened even with program continuance
- Moreover, halting a program is often associated with fiscal problems (governmental or NGO) that also affect ex-participants

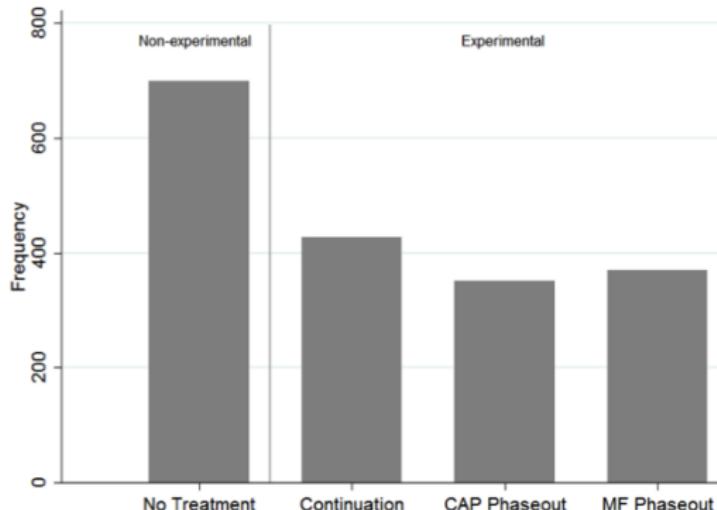

Experimental Design: Reverse RCT


Experimental Design: Reverse RCT

- Main challenge: original intervention rollout was not random
- Lack of post phase-out impact can be interpreted as persistence only under the assumption that the program had initial impacts
- Strategy in paper: comparison to households in villages never treated by BRAC
- Evidence from other strategies: RDD (same region of Uganda) and RCT (other region)


Experimental Design: Reverse RCT

Experimental Design: Reverse RCT


Experimental Design: Reverse RCT

- No Program
- Continuation
- CAP Phaseout
- MF Phaseout

Data and analysis

- Total of 1841 observations for each survey wave

- Sample was stratified by branch
- Given RCT design, analysis uses OLS with branch-level fixed effects
- Errors are clustered at the village cluster level

Observable characteristics at pre-phaseout baseline

	Continuation	CAP Phase Out	<i>difference w.r.t. Continuation</i>	MF Phase Out	<i>difference w.r.t. Continuation</i>
Inputs					
Improved seed use	0.596 (0.024)	0.562 (0.027)	0.034 (0.036)	0.543 (0.026)	0.053 (0.035)
Organic fertilizer use	0.138 (0.017)	0.134 (0.018)	0.004 (0.025)	0.091 (0.015)	0.047** (0.023)
Practices					
Crop rotation	0.585 (0.025)	0.623 (0.027)	-0.037 (0.037)	0.619 (0.026)	-0.033 (0.036)
Intercropping	0.765 (0.022)	0.732 (0.025)	0.033 (0.033)	0.745 (0.024)	0.019 (0.032)
Line sowing	0.783 (0.021)	0.706 (0.026)	0.078** (0.033)	0.796 (0.022)	-0.012 (0.031)
Mixed cropping	0.378 (0.025)	0.437 (0.029)	-0.059 (0.038)	0.373 (0.028)	0.005 (0.037)
Weeding	0.926 (0.013)	0.930 (0.014)	-0.004 (0.019)	0.883 (0.018)	0.043* (0.022)
Zero tillage	0.143 (0.022)	0.128 (0.024)	0.015 (0.032)	0.126 (0.023)	0.017 (0.031)
Putting few seeds in each hole	0.901 (0.015)	0.894 (0.017)	0.007 (0.023)	0.886 (0.015)	0.015 (0.023)
Pest and disease management	0.508 (0.025)	0.473 (0.028)	0.035 (0.038)	0.563 (0.028)	-0.055 (0.038)

Observable characteristics at pre-phaseout baseline (cont.)

	Continuation	CAP Phase Out	<i>difference w.r.t. Continuation</i>	MF Phase Out	<i>difference w.r.t. Continuation</i>
Household characteristics					
Farmer age	39.88 (0.570)	39.18 (0.592)	0.698 (0.822)	40.09 (0.640)	-0.214 (0.857)
Cultivated land in acres	2.488 (0.081)	2.487 (0.089)	0.001 (0.120)	2.338 (0.080)	0.149 (0.114)
Own agricultural land in acres	2.776 (0.124)	2.786 (0.119)	-0.011 (0.172)	2.731 (0.144)	0.045 (0.190)
Formal title to land (yes/no)	0.556 (0.025)	0.486 (0.028)	0.070* (0.037)	0.531 (0.027)	0.025 (0.037)
Number of rooms in main house	2.700 (0.076)	2.657 (0.081)	0.043 (0.111)	2.607 (0.074)	0.093 (0.106)
At least two sets of clothes (yes/no)	0.969 (0.009)	0.952 (0.012)	0.017 (0.015)	0.931 (0.014)	0.038** (0.016)
At least two sets of shoes (yes/no)	0.787 (0.021)	0.819 (0.022)	-0.032 (0.030)	0.768 (0.023)	0.019 (0.031)
Mobile phone (number owned by HH)	0.776 (0.054)	0.891 (0.062)	-0.116 (0.083)	0.853 (0.056)	-0.077 (0.078)
Household appliances (number owned by HH)	1.856 (0.129)	2.068 (0.151)	-0.212 (0.198)	1.909 (0.171)	-0.053 (0.214)
Poultry (number owned by HH)	5.436 (0.364)	6.534 (0.561)	-1.097 (0.669)	5.759 (0.555)	-0.323 (0.663)
Livestock, small (number owned by HH)	2.855 (0.335)	2.640 (0.412)	0.215 (0.530)	2.189 (0.330)	0.666 (0.470)
Livestock, large (number owned by HH)	1.184 (0.078)	1.439 (0.108)	-0.254* (0.133)	1.070 (0.094)	0.114 (0.123)
<i>N</i>	425	349		366	

Empirical Strategy

$$Y_{i,v,b,t} = \alpha^{CAP} T_v^{CAP} + \alpha^{MF} T_v^{MF} + \beta X_i + A_b + \epsilon_{i,v,b,t}$$
$$Y_{i,v,b,t} = \alpha T_v^{PH} + \beta X_i + A_b + \epsilon_{i,v,b,t}$$

- Y is an outcome of interest for household i , in village v , branch b
- T are treatment (phaseout) dummies.
- A_b are branch F.E. (RCT is stratified by 15 branches).
- $t = 1, 2$ represents survey round
- X are household controls (unbalanced baseline characteristics, $Y_{i,0}$)
- Errors are clustered at the village cluster level

Phaseout results - Improved seed use

	Improved seed use		Total quantity of improved seeds (kg), <i>log</i>		Quantity of improved seeds per acre (kg), <i>log</i>	
	(1)	(2)	(3)	(4)	(5)	(6)
Phaseout dummy	0.0050 (0.0336)		0.0721 (0.0823)		0.1061 (0.0987)	
CAP Phaseout dummy		-0.0172 (0.0369)		0.0119 (0.0973)		0.0742 (0.1068)
MF Phaseout dummy		0.0269 (0.0417)		0.1215 (0.0959)		0.1321 (0.1198)
Branch fixed effects	yes	yes	yes	yes	yes	yes
<i>R</i> ²	0.161	0.162	0.183	0.185	0.142	0.143
<i>N</i>	1134	1134	435	435	432	432
<i>Mean value in Continuation</i>	0.384		9.37		4.97	

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses.

Errors clustered at the village cluster level.

- No statistically significant reduction in improved seed use as a result of phase-out after 3 seasons

Phaseout - Reduced purchases from CAPs and MFs

Sources of improved seed - 1 season after Phase-out

	Market sources (1)	Market sources (2)	CAP and MF (3)	CAP and MF (4)	Other BRAC sources (5)	Other BRAC sources (6)
Phaseout dummy	0.0306 (0.0302)		-0.0449* (0.0255)		0.0092 (0.0066)	
CAP Phaseout dummy		0.0233 (0.0354)		-0.0371 (0.0269)		0.0064 (0.0083)
MF Phaseout dummy		0.0381 (0.0351)		-0.0528* (0.0290)		0.0121 (0.0078)
Controls	yes	yes	yes	yes	yes	yes
R^2	0.197	0.197	0.085	0.085	0.116	0.116
N	1098	1098	1098	1098	1092	1092
<i>Mean value in Continuation</i>	0.278		0.097		0.005	

Note: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. Standard errors in parentheses. Errors clustered at the village cluster level.
Controls include branch dummies, dummies for outcome at pre-phase-out baseline and the use of agricultural practices.

- Indications of reduced purchases from BRAC sources, particularly Model Farmers
- Positive coefficients indicate increases from other sources, but statistically not significantly different from zero

Phaseout - CAPs and MFs replaced by other sources

Sources of improved seed - 3 seasons after Phase-out

	Market sources		CAP and MF		Other BRAC sources	
	(1)	(2)	(3)	(4)	(5)	(6)
Phaseout dummy	0.0589* (0.0327)		-0.0592** (0.0259)		0.0213*** (0.0069)	
CAP Phaseout dummy		0.0364 (0.0366)		-0.0467* (0.0280)		0.0145* (0.0083)
MF Phaseout dummy		0.0819** (0.0395)		-0.0717*** (0.0271)		0.0282*** (0.0091)
Controls	yes	yes	yes	yes	yes	yes
<i>R</i> ²	0.174	0.175	0.113	0.115	0.031	0.033
<i>N</i>	1008	1008	1008	1008	1007	1007
<i>Mean value in Continuation</i>		0.261	0.100		0.002	

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses. Errors clustered at the village cluster level. Controls include branch dummies, dummies for outcome at pre-phase-out baseline and the use of agricultural practices.

- Stronger evidence of a fall in purchases from CAPs and MFs than after one season post-phase-out, while a significant number of farmers turn to conventional market sources
- Some difference between treatment arms: roughly double coefficient values and higher significance levels for MF than CAP - indicating stronger deterioration for MF sales
- Results after one and three seasons suggest there is a lagged response to phaseout, as farmers take time to find viable alternative sources of seed - possible U-shape response?

Phaseout - Farmers' views on seed quality

	Improved seed use	Frequency of purchase	Market sources	BRAC sources
Phaseouts				
Poor/neutral opinion	-0.1102*** (0.0407)	-0.5109*** (0.1159)	0.1712*** (0.0503)	-0.1005** (0.0462)
Branch fixed effects	yes	yes	yes	yes
R^2	0.154	0.170	0.247	0.261
N	710	711	273	273
Continuation				
Poor/neutral opinion	-0.0317 (0.0674)	-0.3778** (0.1435)	0.0231 (0.0723)	-0.0946 (0.0825)
Branch fixed effects	yes	yes	yes	yes
R^2	0.154	0.170	0.247	0.261
N	422	423	162	162

Note: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. Standard errors in parentheses.

Errors clustered at the village cluster level.

- A negative or neutral opinion of BRAC seeds as compared to other types of seed available on the market is related to lower improved seed use - but only in Phase-out groups
- In Continuation, farmers' opinion of the seed matters less or not at all - convenience and price trumps other considerations

Phaseout results

Supply side - CAPs

- The CAP system does not appear to be sustainable - data indicates activity is reduced in phased-out groups
- Transport costs are a key issue - 51% of phased-out CAPs say transport costs are a major reason for discontinuing activity, vs 31% in Continuation

	Sale of BRAC seed dummy	Maize seed sold - quantities <i>log</i>	Maize seed sold - price <i>log</i>
Phaseout	0.0180 (0.1058)	-0.2184 (0.5340)	0.1451 (0.1616)
Branch fixed effects	yes	yes	yes
<i>R</i> ²	0.348	0.662	0.520
<i>N</i>	76	34	34
<i>Mean value in Continuation</i>	0.464	277.3	2553.8

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.
Errors clustered at the village cluster level. Includes branch fixed effects.

- Lack of statistical significance possibly due to small size of the CAP sample (*N*=76)

Phaseout - Other outcomes not impacted after phaseout

- Use of both organic and chemical fertilizer is unchanged after phase-out
- Local seeds are a substitute for improved seed - no increase in their use post-phase-out, which would be expected if improved seed use had decreased
- No effect of phase-out on the application of improved cultivation practices (crop rotation, intercropping, mixed cropping, line sowing, etc.) in the phased-out areas compared to Continuation group, suggesting knowledge is retained 3 seasons time after treatment is discontinued
- Maize yields and overall yields are not significantly negatively affected by the phase-out
- Total revenues and profits from agriculture reported by farmers also do not differ significantly between phased-out and Continuation groups
- Crop diversification remains the same post-phaseout
- Sustainability so far with two more rounds of data collection still to come

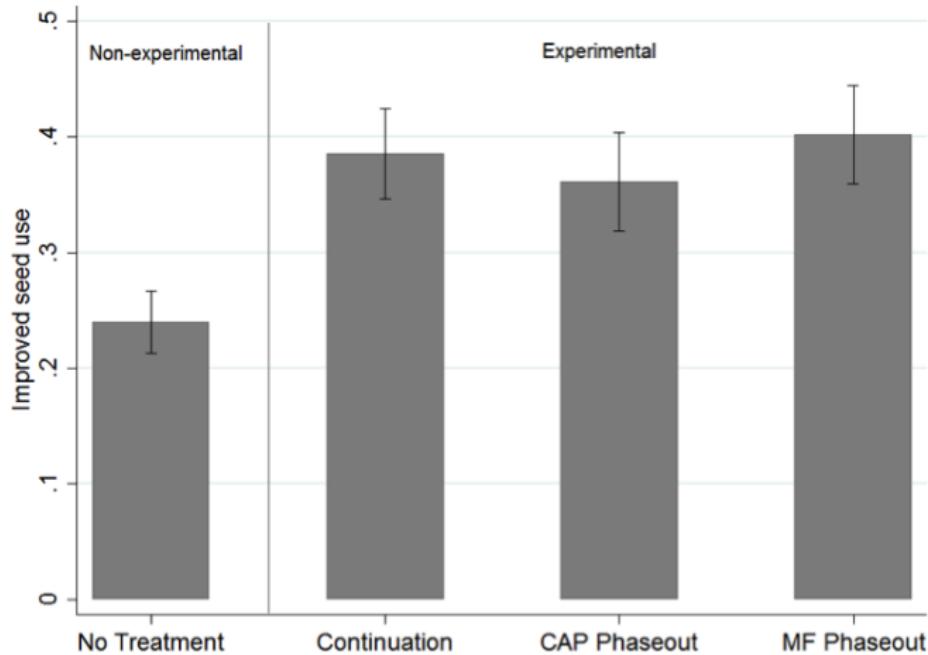
Program impacts

- Can we interpret absence of phaseout effects as persistence or absence of program impacts?
- Prior research finds positive impact on various farming practices and use of inputs
 - Barua (2011) - DiD, PSM
 - Pan et al. (2015) - RDD
 - Sulaiman et al. (RCT, in progress)
- We contracted a matched contemporaneous sample - the "No Treatment" group - of villages (in same branches) that were never treated by BRAC.

Program impacts

- The **No Treatment** arm - the group of villages that never received treatment - was not randomly chosen prior to the start of the intervention, but only after the program was already implemented and prior to the start of the randomized phase-out
- Villages were chosen from the same branches as the treated groups, and are broadly comparable on observables to the experimental population
- Possible there may have been some unobservable knowledge or supply spillover that would systematically reduce estimated impacts

Initial impacts - Balance on time-invariant indicators


	No Treatment	Continuation	Difference
Farmer age	42.18 (0.538)	41.93 (0.603)	0.251 (0.824)
Education level, <i>highest grade completed</i>	5.344 (0.151)	5.569 (0.201)	-0.225 (0.251)
Cultivated land, <i>in acres</i>	1.978 (0.070)	2.155 (0.088)	-0.177 (0.113)
Own agricultural land, <i>in acres</i>	2.314 (0.169)	2.369 (0.110)	-0.055 (0.232)
Formal title to land	0.556 (0.020)	0.604 (0.024)	-0.048 (0.032)
At least two sets of clothes	0.887 (0.012)	0.906 (0.014)	-0.019 (0.019)
At least two sets of shoes	0.645 (0.018)	0.665 (0.023)	-0.020 (0.030)
Livestock, large	1.154 (0.092)	1.169 (0.102)	-0.015 (0.143)
Livestock, small	1.368 (0.091)	1.230 (0.092)	0.138 (0.137)
Village offering BRAC microfinance	0.238 (0.016)	0.655 (0.023)	-0.417*** (0.027)
Distance to BRAC branch office	6.497 (0.142)	4.065 (0.114)	2.432*** (0.203)

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.

- Significant differences only in membership in BRAC's microfinance program and distance to BRAC branch offices - these we include as controls in the regression analysis

Initial impacts

Improved seed use by treatment group

Empirical Strategy

$$Y_{i,v,b} = \alpha T_v + \beta X_i + A_b + MF_v + D_v + \epsilon_{i,v,b}$$

- Y is an outcome of interest for household i , in village v , branch b
- T are treatment (phaseout) dummies.
- A_b are branch F.E. (RCT is stratified by 15 branches).
- $t = 1, 2$ represents survey round
- Errors are clustered at the village cluster level
- MF is Microfinance, D is distance to branch office.

Initial impacts - Improved seed use

	Improved seed use			Improved seed purchases		
	(1)	(2)	(3)	(4)	(5)	(6)
Treated	0.1461*** (0.0299)			0.1301*** (0.0309)		
Continuation dummy		0.1445*** (0.0439)	0.1492*** (0.0514)		0.1378*** (0.0434)	0.1403*** (0.0522)
CAP Phaseout dummy			0.1248*** (0.0389)		0.1105*** (0.0401)	
MF Phaseout dummy			0.1651*** (0.0349)		0.1396*** (0.0355)	
BRAC microfinance member	0.0283 (0.0337)	0.0308 (0.0340)	-0.0203 (0.0501)	0.0344 (0.0330)	0.0358 (0.0334)	-0.0046 (0.0508)
Distance to BRAC branch office	-0.0105** (0.0046)	-0.0105** (0.0044)	-0.0160*** (0.0049)	-0.0074* (0.0041)	-0.0074* (0.0041)	-0.0114* (0.0046)
Branch fixed effects	yes	yes	yes	yes	yes	yes
<i>R</i> ²	0.186	0.187	0.214	0.189	0.189	0.211
<i>N</i>	1808	1808	1094	1800	1800	1092

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.

Errors clustered at the village cluster level.

- Improved seed use higher in treated groups than in No Treatment by 12-16 percentage pts
- Effect of distance is significant and negative, though small
- Significant effect on improved seed purchases confirmed by SW Uganda RCT

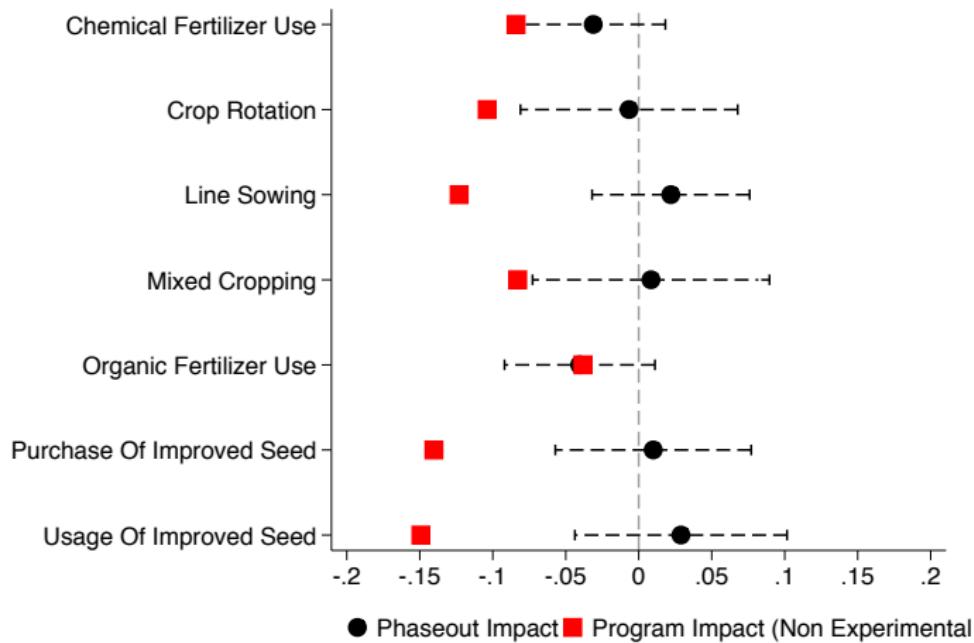
Initial impacts - Local seed use

	Local seed use		
	(1)	(2)	(3)
Treated	-0.0366** (0.0160)		
Continuation dummy		-0.0210 (0.0210)	-0.0320 (0.0211)
CAP Phaseout dummy		-0.0156 (0.0199)	
MF Phaseout dummy		-0.0672*** (0.0242)	
BRAC microfinance member	0.0187 (0.0212)	0.0148 (0.0214)	0.0062 (0.0263)
Distance to BRAC branch office	0.0112*** (0.0027)	0.0111*** (0.0027)	0.0083*** (0.0027)
Branch fixed effects	yes	yes	yes
R^2	0.068	0.071	0.078
N	1809	1809	1095

Note: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. Standard errors are in parentheses.
Errors clustered at the village cluster level.

- Local seed use decreases significantly, indicating farmers substitute local seeds with high-yield varieties

Initial impacts - Cultivation practices


	Crop rotation	Inter-cropping	Mixed cropping	Line sowing	Irrigation	Proper weeding	Zero tillage
Continuation dummy	0.1038** (0.0404)	-0.0511 (0.0338)	0.0829** (0.0389)	0.1230*** (0.0295)	-0.0147* (0.0086)	0.0108 (0.0214)	0.0144 (0.0169)
BRAC microfinance member	0.0048 (0.0414)	0.0069 (0.0296)	-0.0217 (0.0497)	-0.0456 (0.0397)	0.0096 (0.0088)	0.0352 (0.0222)	-0.0028 (0.0166)
Distance to BRAC office	0.0106* (0.0059)	0.0026 (0.0028)	-0.0008 (0.0052)	0.0038 (0.0048)	-0.0001 (0.0010)	0.0049 (0.0037)	0.0002 (0.0024)
Branch fixed effects	yes	yes	yes	yes	yes	yes	yes
<i>R</i> ²	0.101	0.378	0.149	0.180	0.033	0.066	0.127
<i>N</i>	1031	1039	1028	1006	874	1047	709
<i>Value at pre-phaseout baseline</i>	0.665	0.716	0.435	0.814		0.925	0.146

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.
Errors clustered at the village cluster level.

- Crop rotation, mixed cropping and line sowing see significant increases compared to the No Treatment group

Initial vs Phaseout impacts

- Farmers appear to be retaining knowledge of the practices
- Red square shows estimated deficit of those not treated

Initial impacts - Crop diversification

	Number of crops grown		
	(1)	(2)	(3)
Treated	0.3207** (0.01326)		
Continuation dummy		0.3826** (0.1594)	0.3758** (0.1618)
CAP Phaseout dummy		0.3321 (0.2032)	
MF Phaseout dummy		0.2576 (0.1811)	
BRAC microfinance member	0.1814 (0.1558)	0.1745 (0.1568)	-0.2331 (0.1413)
Distance to BRAC branch office	0.0789** (0.0314)	0.0786** (0.0319)	0.0278 (0.0307)
Branch fixed effects	yes	yes	yes
R^2	0.078	0.078	0.091
N	1805	1805	1098

Note: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$. Standard errors are in parentheses.
Errors clustered at the village cluster level.

- The average number of crops grown (3.27 in No Treatment) increases by around 0.32-0.38 as a result of the program
- Recent RCT results from Southwest Uganda confirm this finding

Initial impacts - Revenues and production value

	Revenues UGX, <i>log</i>			Total production value UGX, <i>log</i>		
	(1)	(2)	(3)	(4)	(5)	(6)
Treated dummy	0.1113* (0.0665)			0.0428 (0.0841)		
Continuation dummy		0.0798 (0.0947)	0.1308 (0.1061)		0.0091 (0.1258)	0.0920 (0.1136)
CAP Phaseout dummy		0.0944 (0.0864)			0.1137 (0.1269)	
MF Phaseout dummy		0.1558 (0.1008)			0.0132 (0.1321)	
BRAC microfinance member	-0.0762 (0.0729)	-0.0697 (0.0724)	-0.1408 (0.0933)	0.1144 (0.1437)	0.1096 (0.1458)	-0.1292 (0.1702)
Distance to BRAC office	0.0024 (0.0121)	0.0027 (0.0119)	-0.0112 (0.0118)	0.0200 (0.0216)	0.0202 (0.0218)	-0.0230 (0.0149)
Branch fixed effects	yes	yes	yes	yes	yes	yes
<i>R</i> ²	0.088	0.088	0.141	0.153	0.154	0.208
<i>N</i>	1116	1116	677	1680	1680	1020

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parentheses.

Errors clustered at the village cluster level.

- Indication of positive impact on revenues, but no statistically significant effect on production value
- Other research - Pan et al. (2015) using RDD - finds production value rises 21%

Conclusions

- Addressed the fundamental question of the sustainability of benefits from agricultural extension programs
- Introduction of a novel research method (Reverse-RCT) for identifying the impacts of the discontinuation of an intervention
- Applied to the phase-out of an agricultural extension program for smallholder women farmers in Uganda, implemented by BRAC
- Three seasons after phase-out, the application of improved practices remains at similar levels in Phaseout and Continuation areas
- Improved seed use overall remained steady despite a decline in CAP activity in phased-out villages; instead, farmers purchase seed from input dealers
- Results suggest it takes time for farmers to find alternative sources of seed to replace CAPs, possibly resulting in a U-shaped response to intervention discontinuation
- Additional surveys needed to address key questions

- Two more rounds of the household survey - adds to confidence that sustainability continues over a longer number of years
- New data will be collected to address other key issues:
 - Knowledge of cultivation practices
 - Women's empowerment
 - Food security
 - Marketing
 - Post-harvest loss
 - Agency: seeking new information, acting in advance of need
- Systematically explore various possible U-shape responses
- Supplementary survey of seed dealers - seed type, quantity, perceived and objective quality, and customer types

Thank you